[Journal logo]

Volume 69 
Part 11 
Pages m623-m624  
November 2013  

Received 22 October 2013
Accepted 22 October 2013
Online 31 October 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.005 Å
R = 0.022
wR = 0.050
Data-to-parameter ratio = 19.6
Details
Open access

Di-[mu]-iodido-bis­(iodido­{methyl 4-[(pyridin-2-yl­methyl­idene)amino]­benzoate-[kappa]2N,N'}cadmium)

aDepartment of Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India,bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia
Correspondence e-mail: Edward.Tiekink@gmail.com

The complete binuclear molecule of the title compound, [Cd2I4(C14H12N2O2)2], is generated by the application of a centre of inversion. The Cd-I bond lengths of the central core are close and uniformly longer than the exocyclic Cd-I bond. The coordination sphere of the CdII atom is completed by two N atoms of a chelating methyl 4-[(pyridin-2-yl­methyl­idene)amino]­benzoate ligand, and is based on a square pyramid with the terminal I atom in the apical position. The three-dimensional crystal packing is stabilized by C-H...O and C-H...[pi] inter­actions, each involving the pyridine ring.

Related literature

For spectroscopic, biological and structural studies of zinc triad elements with (E)-N-(pyridin-2-yl­methyl­idene)aryl­amine ligands, see: Basu Baul, Kundu, Höpfl et al. (2013[Basu Baul, T. S., Kundu, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Polyhedron, 55, 270-282.]); Basu Baul, Kundu, Linden et al. (2013[Basu Baul, T. S., Kundu, S., Linden, A., Raviprakash, N., Manna, S. & Guedes da Silva, F. (2013). Dalton Trans. doi:10.1039/c3dt52062e.]); Basu Baul, Kundu, Mitra et al. (2013[Basu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905-1920.]). For additional structural analysis, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cd2I4(C14H12N2O2)2]

  • Mr = 1212.91

  • Triclinic, [P \overline 1]

  • a = 8.4883 (3) Å

  • b = 9.3677 (5) Å

  • c = 10.9029 (5) Å

  • [alpha] = 109.516 (5)°

  • [beta] = 95.868 (3)°

  • [gamma] = 90.242 (4)°

  • V = 812.18 (6) Å3

  • Z = 1

  • Mo K[alpha] radiation

  • [mu] = 5.15 mm-1

  • T = 100 K

  • 0.20 × 0.15 × 0.10 mm

Data collection
  • Agilent SuperNova Dual diffractometer with an Atlas detector

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.698, Tmax = 1.000

  • 11886 measured reflections

  • 3738 independent reflections

  • 3374 reflections with I > 2[sigma](I)

  • Rint = 0.031

Refinement
  • R[F2 > 2[sigma](F2)] = 0.022

  • wR(F2) = 0.050

  • S = 1.00

  • 3738 reflections

  • 191 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.58 e Å-3

  • [Delta][rho]min = -1.04 e Å-3

Table 1
Selected bond lengths (Å)

I1-Cd 2.8765 (4)
I1-Cdi 2.9813 (3)
I2-Cd 2.7023 (4)
Cd-N1 2.333 (2)
Cd-N2 2.402 (2)
Symmetry code: (i) -x+1, -y+1, -z+1.

Table 2
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the N1,C1-C5 ring.

D-H...A D-H H...A D...A D-H...A
C1-H1...O2ii 0.95 2.34 3.066 (4) 133
C14-H14B...Cg1iii 0.98 2.79 3.416 (4) 123
Symmetry codes: (ii) x+1, y, z+1; (iii) -x, -y+2, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5357 ).


Acknowledgements

The financial support of the University Grants Commission, New Delhi, India, to TSBB [F. No. 42-396/2013 (SR)] is gratefully acknowledged. The authors also thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.  [CSD] [CrossRef]
Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.
Basu Baul, T. S., Kundu, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Polyhedron, 55, 270-282.  [CrossRef] [ChemPort]
Basu Baul, T. S., Kundu, S., Linden, A., Raviprakash, N., Manna, S. & Guedes da Silva, F. (2013). Dalton Trans. doi:10.1039/c3dt52062e.
Basu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905-1920.  [CrossRef] [ChemPort] [PubMed]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m623-m624   [ doi:10.1107/S160053681302905X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.