metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Poly[[μ-chlorido-μ-[2-(2,4-di­fluoro­phen­yl)-1,3-bis­­(1,2,4-triazol-1-yl)propan-2-ol-κ2N4:N4′]-zinc] chloride dihydrate]

aCollege of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, People's Republic of China
*Correspondence e-mail: pgh1919@163.com

(Received 9 September 2013; accepted 25 September 2013; online 2 October 2013)

The title compound, {[ZnCl(C13H12F2N6O)2]Cl·2H2O}n, is a two-dimensional coordination polymer. The ZnII atom is six-coordinated by four N atoms from four 2-(2,4-di­fluoro­phen­yl)-1,3-bis­(1,2,4-triazol-1-yl)propan-2-ol (HFlu) ligands and by two Cl atoms in a distorted octa­hedral geometry. Two Cl atoms bridge two ZnII atoms, forming a centrosymmetric dinuclear unit. The HFlu ligands connect the dinuclear units into a 44 net parallel to (001) when the dinuclear unit is considered as a node. O—H⋯O and O—H⋯Cl hydrogen bonds link the cationic layer, free chloride anions and lattice water mol­ecules. Intra­layer ππ inter­actions between the triazole rings are observed [centroid–centroid distance = 3.716 (6) Å].

Related literature

For background to this class of compounds, see: Han et al. (2006a[Han, H., Song, Y., Hou, H., Fan, Y. & Zhu, Y. (2006a). Dalton Trans. pp. 1972-1980.],b[Han, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006b). Eur. J. Inorg. Chem. pp. 1594-1600.]). For related structures, see: Gao et al. (2001[Gao, J.-S., Ma, D.-S., Ma, Z.-G., Chen, G.-R., Hou, Y.-J. & Ye, L. (2001). Chin. J. Mol. Sci. 17, 17-22.]); Zhang et al. (2007[Zhang, L., Ling, Y., Peng, F. & Du, M. (2007). J. Mol. Struct. 829, 161-167.]).

[Scheme 1]

Experimental

Crystal data
  • [ZnCl(C13H12F2N6O)2]Cl·2H2O

  • Mr = 784.89

  • Triclinic, [P \overline 1]

  • a = 10.2310 (6) Å

  • b = 11.8118 (6) Å

  • c = 14.3588 (9) Å

  • α = 91.191 (7)°

  • β = 107.481 (5)°

  • γ = 106.074 (6)°

  • V = 1580.11 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.03 mm−1

  • T = 296 K

  • 0.25 × 0.25 × 0.21 mm

Data collection
  • Bruker SMART 1000 CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.784, Tmax = 0.813

  • 8374 measured reflections

  • 5465 independent reflections

  • 3137 reflections with I > 2σ(I)

  • Rint = 0.064

Refinement
  • R[F2 > 2σ(F2)] = 0.080

  • wR(F2) = 0.306

  • S = 1.07

  • 5465 reflections

  • 444 parameters

  • H-atom parameters constrained

  • Δρmax = 0.92 e Å−3

  • Δρmin = −1.09 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯Cl2i 0.82 2.29 3.103 (7) 172
O2—H2⋯O4i 0.82 1.87 2.653 (9) 160
O3—H3A⋯Cl2ii 0.85 2.32 3.163 (11) 170
O3—H3B⋯Cl1iii 0.85 2.38 3.221 (10) 170
O4—H4A⋯O2iv 0.85 2.24 2.784 (9) 122
O4—H4B⋯Cl2 0.85 2.29 3.101 (8) 160
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x-1, y, z; (iv) x-1, y+1, z.

Data collection: SMART (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2007[Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: DIAMOND (Brandenburg, 1999[Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]).

Supporting information


Comment top

Fluconazole 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl) propan-2-ol, which is a 1,2,4-triazole derivative, is not only a widely used antifungal medicine but also a good flexible ligand to construct metal-organic polymers with optical properties and medical applications (Han et al., 2006a,b). Fluconazole can coordinate to metal ions in different configurations. We here report a new coordination polymer based on fluconazole.

The asymmetric unit of the title compound contains one ZnII ion, two 2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol (HFlu) ligands, one coordinated Cl-1 anion, one free Cl-1 anion and two free water molecules. As shown in Fig. 1, the ZnII ion is six-coordinated by four N atoms from four HFlu ligands and two bridging Cl-1 anions. The Zn—N bond lengths range from 2.127 (8) to 2.197 (7) Å, and the Zn—Cl bond distances are 2.418 (3) and 2.732 (3) Å. The Zn—N bond lengths are in the normal range as observed in other Zn(II) complexes (Zhang et al., 2007). However, the Zn—Cl bond distances are longer than those as observed in other Zn(II) complexe (Gao et al., 2001). Two ZnII ions are connected by two HFlu ligands, forming a Zn2(HFlu)2 macrocycle, in which the Zn···Zn distance is 11.297 (2)Å. The other two HFlu ligands link the macrocycle along the a axis with a Zn···Zn distance of 10.231 (2) Å to form a grid unit with dimensions of 11.30 × 10.23 Å2 (Fig. 2a). These grid units are further connected by two Cl-1 anions with a Zn···Zn distance of 3.879 (1) Å into a two-dimensional structure (Fig. 2b), in which another type of grid with dimensions of 10.231 (2) × 3.879 (1) Å2 is formed.

Free water molecules and free Cl-1 anions are accommodated in the residual empties to shrink the void space and stabilize the structure. Moreover, there are intermolecular O—H···O and O—H···Cl hydrogen bonds involving the cationic layer, free Cl-1 anions and water molecules (Table 1, Fig. 3). These interactions further stabilize the structural framework.

Related literature top

For background to this class of compounds, see: Han et al. (2006a,b). For related structures, see: Gao et al. (2001); Zhang et al. (2007).

Experimental top

A mixture of fluconazole (153 mg, 0.5 mmol), ZnCl2 (136 mg, 1.0 mmol), 15 ml H2O, and 3 ml ethanol was placed in a Parr Teflon-lined stainless steel vessel (30 ml), and then the vessel was sealed and heated at 423 K for 3 days. After the mixture was slowly cooled to room temperature, colorless block-shaped crystals of the title compound was obtained. Analysis, calculated for C26H28Cl2F4N12O4Zn: C 39.79, H 3.60, N 21.42%; found: C 39.66, H 3.52, N 21.28%.

Refinement top

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.97(methylene) and O—H = 0.82 Å and with Uiso(H) = 1.2(1.5 for hydroxyl)Ueq(C,O). H atoms of the water molecules were located in a difference Fourier map and refined as riding, with O—H = 0.85 Å and Uiso(H) = 1.2Ueq(O). The maximum remaining electron density was found 1.00 Å from Zn1 and the minimum density 0.83 Å from Zn1.

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The coordination environment around the ZnII atom in the title compound (uncoordinated Cl atom, water molecules and H atoms have been omitted for clarity). Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (A) 1+x, y, z; (B) 2-x, -y, 1-z; (C) 3-x, 1-y, 1-z.]
[Figure 2] Fig. 2. (a) A view of the grid unit in the title compound. (b) A view of the two-dimensional framework. H atoms and difluorophenyl groups of HFlu are omitted for clarity.
[Figure 3] Fig. 3. A view of hydrogen bonding interactions (dashed lines) in the title compound. H atoms and difluorophenyl groups of HFlu are omitted for clarity.
Poly[[µ-chlorido-µ-[2-(2,4-difluorophenyl)-1,3-bis(1,2,4-triazol-1-yl)propan-2-ol-κ2N4:N4']-zinc] chloride dihydrate] top
Crystal data top
[ZnCl(C13H12F2N6O)2]Cl·2H2OZ = 2
Mr = 784.89F(000) = 800
Triclinic, P1Dx = 1.650 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.2310 (6) ÅCell parameters from 859 reflections
b = 11.8118 (6) Åθ = 2.2–22.1°
c = 14.3588 (9) ŵ = 1.03 mm1
α = 91.191 (7)°T = 296 K
β = 107.481 (5)°Block, colorless
γ = 106.074 (6)°0.25 × 0.25 × 0.21 mm
V = 1580.11 (18) Å3
Data collection top
Bruker SMART 1000 CCD
diffractometer
5465 independent reflections
Radiation source: fine-focus sealed tube3137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ϕ and ω scansθmax = 25.0°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1212
Tmin = 0.784, Tmax = 0.813k = 1412
8374 measured reflectionsl = 1417
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.080Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.306H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1513P)2 + 4.0805P]
where P = (Fo2 + 2Fc2)/3
5465 reflections(Δ/σ)max < 0.001
444 parametersΔρmax = 0.92 e Å3
0 restraintsΔρmin = 1.09 e Å3
Crystal data top
[ZnCl(C13H12F2N6O)2]Cl·2H2Oγ = 106.074 (6)°
Mr = 784.89V = 1580.11 (18) Å3
Triclinic, P1Z = 2
a = 10.2310 (6) ÅMo Kα radiation
b = 11.8118 (6) ŵ = 1.03 mm1
c = 14.3588 (9) ÅT = 296 K
α = 91.191 (7)°0.25 × 0.25 × 0.21 mm
β = 107.481 (5)°
Data collection top
Bruker SMART 1000 CCD
diffractometer
5465 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
3137 reflections with I > 2σ(I)
Tmin = 0.784, Tmax = 0.813Rint = 0.064
8374 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0800 restraints
wR(F2) = 0.306H-atom parameters constrained
S = 1.07Δρmax = 0.92 e Å3
5465 reflectionsΔρmin = 1.09 e Å3
444 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.32995 (12)0.41377 (10)0.39336 (8)0.0404 (4)
Cl11.4508 (3)0.6199 (2)0.45651 (17)0.0448 (6)
Cl20.4395 (3)0.9322 (2)0.6822 (2)0.0584 (8)
F10.7971 (10)0.0762 (7)0.0678 (5)0.086 (2)
F20.6122 (9)0.2436 (7)0.0664 (4)0.083 (2)
F30.8098 (7)0.2576 (6)0.7540 (4)0.0657 (18)
F41.2544 (8)0.3386 (7)0.9953 (4)0.079 (2)
N10.5148 (8)0.3554 (8)0.1793 (5)0.043 (2)
N20.5348 (9)0.4724 (7)0.1718 (6)0.048 (2)
N30.4536 (8)0.4152 (7)0.2976 (5)0.041 (2)
N41.1903 (9)0.4025 (7)0.4804 (5)0.041 (2)
N51.0061 (8)0.3403 (6)0.5307 (5)0.0335 (18)
N61.0891 (8)0.4430 (6)0.5911 (5)0.0345 (18)
N71.1616 (8)0.4340 (7)0.2632 (5)0.041 (2)
N81.0182 (9)0.4016 (9)0.1051 (6)0.054 (2)
N90.9478 (8)0.4220 (7)0.1671 (5)0.0388 (19)
N100.7509 (8)0.2201 (7)0.6379 (5)0.0393 (19)
N110.8367 (9)0.0419 (7)0.7239 (6)0.048 (2)
N120.7677 (8)0.0339 (7)0.6293 (5)0.0381 (19)
O10.7534 (7)0.2765 (6)0.2468 (4)0.0446 (17)
H10.69560.22120.26020.067*
O20.9802 (7)0.1089 (6)0.5651 (4)0.0417 (16)
H20.93230.07970.50870.063*
O30.5759 (12)0.8041 (10)0.3197 (8)0.106 (4)
H3A0.56600.87280.32470.127*
H3B0.53940.76280.35850.127*
O40.1267 (8)0.9438 (6)0.6285 (5)0.055 (2)
H4A0.09600.99210.65430.065*
H4B0.21650.95820.63940.065*
C10.7769 (15)0.0150 (10)0.0176 (9)0.061 (3)
C20.7008 (14)0.0812 (11)0.0685 (8)0.061 (3)
H2A0.66110.06690.13660.073*
C30.6831 (12)0.1716 (11)0.0163 (8)0.055 (3)
C40.7305 (10)0.1914 (8)0.0866 (6)0.037 (2)
C50.8047 (12)0.1152 (9)0.1326 (7)0.048 (3)
H50.83790.12280.20090.058*
C60.8309 (14)0.0295 (9)0.0817 (8)0.059 (3)
H60.88480.01780.11460.071*
C70.7064 (10)0.2849 (8)0.1446 (6)0.038 (2)
C80.5481 (11)0.2778 (9)0.1112 (7)0.044 (2)
H8A0.52190.30180.04560.053*
H8B0.49110.19630.10830.053*
C90.4661 (10)0.3227 (9)0.2527 (7)0.043 (2)
H90.44410.24600.27010.051*
C100.4963 (11)0.5041 (9)0.2440 (7)0.045 (2)
H100.49780.58160.25840.054*
C111.1463 (11)0.4096 (10)0.1657 (7)0.050 (3)
H111.22020.39970.14460.060*
C121.0311 (11)0.4394 (8)0.2601 (7)0.042 (2)
H121.00350.45320.31440.051*
C130.7955 (10)0.4106 (9)0.1330 (7)0.045 (3)
H13A0.76690.42440.06440.054*
H13B0.77660.46990.17060.054*
C140.9018 (10)0.1666 (8)0.6051 (6)0.035 (2)
C150.9956 (10)0.2149 (8)0.7112 (6)0.036 (2)
C160.9466 (11)0.2552 (8)0.7784 (7)0.043 (2)
C171.0282 (12)0.2959 (9)0.8753 (6)0.047 (3)
H170.99000.32110.92020.056*
C181.1686 (12)0.2967 (10)0.9008 (6)0.050 (3)
C191.2280 (12)0.2644 (9)0.8356 (7)0.052 (3)
H191.32480.26910.85500.062*
C201.1427 (10)0.2248 (8)0.7411 (7)0.040 (2)
H201.18260.20390.69550.048*
C210.7561 (10)0.0805 (8)0.5970 (7)0.043 (2)
H21A0.71200.11490.63670.052*
H21B0.69440.06830.52920.052*
C220.7170 (11)0.1387 (9)0.5789 (7)0.045 (3)
H220.66530.15460.51220.054*
C230.8252 (11)0.1510 (9)0.7257 (7)0.046 (3)
H230.86440.18220.78270.056*
C241.0684 (10)0.3188 (8)0.4666 (6)0.038 (2)
H241.03140.25390.41870.046*
C251.1980 (11)0.4760 (8)0.5568 (6)0.038 (2)
H251.27420.54450.58290.045*
C260.8744 (10)0.2674 (8)0.5427 (7)0.038 (2)
H26A0.80540.23380.47870.046*
H26B0.83410.31600.57450.046*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0408 (7)0.0385 (7)0.0419 (7)0.0027 (5)0.0216 (5)0.0007 (5)
Cl10.0473 (14)0.0335 (13)0.0487 (13)0.0027 (11)0.0168 (11)0.0009 (10)
Cl20.0528 (16)0.0554 (17)0.0658 (17)0.0127 (14)0.0199 (13)0.0137 (13)
F10.126 (7)0.067 (5)0.085 (5)0.039 (5)0.054 (5)0.006 (4)
F20.127 (7)0.099 (6)0.043 (4)0.071 (5)0.020 (4)0.013 (3)
F30.048 (4)0.095 (5)0.059 (4)0.027 (4)0.019 (3)0.005 (3)
F40.073 (5)0.105 (6)0.040 (3)0.023 (4)0.002 (3)0.014 (3)
N10.037 (4)0.057 (6)0.040 (4)0.018 (4)0.017 (3)0.006 (4)
N20.052 (5)0.038 (5)0.060 (5)0.008 (4)0.030 (4)0.008 (4)
N30.031 (4)0.048 (5)0.045 (4)0.010 (4)0.014 (3)0.009 (4)
N40.044 (5)0.045 (5)0.037 (4)0.012 (4)0.019 (3)0.009 (4)
N50.035 (4)0.034 (4)0.031 (4)0.007 (3)0.012 (3)0.002 (3)
N60.035 (4)0.037 (4)0.036 (4)0.009 (4)0.019 (3)0.003 (3)
N70.033 (4)0.053 (5)0.039 (4)0.012 (4)0.013 (3)0.005 (4)
N80.039 (5)0.091 (7)0.038 (4)0.022 (5)0.021 (4)0.004 (4)
N90.031 (4)0.051 (5)0.037 (4)0.010 (4)0.015 (3)0.007 (4)
N100.042 (5)0.039 (5)0.042 (4)0.009 (4)0.023 (4)0.011 (4)
N110.058 (5)0.025 (4)0.045 (4)0.005 (4)0.008 (4)0.001 (3)
N120.043 (5)0.036 (5)0.033 (4)0.005 (4)0.014 (3)0.009 (3)
O10.048 (4)0.046 (4)0.036 (3)0.002 (3)0.018 (3)0.002 (3)
O20.054 (4)0.043 (4)0.034 (3)0.023 (3)0.015 (3)0.005 (3)
O30.112 (9)0.096 (8)0.138 (9)0.039 (7)0.071 (7)0.047 (7)
O40.060 (5)0.052 (5)0.051 (4)0.025 (4)0.010 (3)0.002 (3)
C10.083 (9)0.036 (6)0.061 (7)0.006 (6)0.031 (6)0.010 (5)
C20.080 (9)0.064 (8)0.036 (6)0.018 (7)0.020 (5)0.011 (5)
C30.057 (7)0.067 (8)0.045 (6)0.023 (6)0.017 (5)0.011 (5)
C40.038 (5)0.040 (5)0.035 (5)0.011 (4)0.015 (4)0.007 (4)
C50.061 (7)0.040 (6)0.040 (5)0.007 (5)0.020 (5)0.005 (4)
C60.076 (8)0.035 (6)0.067 (7)0.019 (6)0.024 (6)0.002 (5)
C70.035 (5)0.039 (5)0.038 (5)0.009 (4)0.013 (4)0.002 (4)
C80.046 (6)0.047 (6)0.039 (5)0.007 (5)0.020 (4)0.009 (4)
C90.035 (5)0.043 (6)0.053 (6)0.014 (5)0.014 (4)0.005 (5)
C100.050 (6)0.031 (5)0.053 (6)0.007 (5)0.020 (5)0.002 (4)
C110.037 (6)0.083 (8)0.036 (5)0.020 (6)0.020 (4)0.010 (5)
C120.051 (6)0.036 (5)0.040 (5)0.009 (5)0.017 (4)0.001 (4)
C130.041 (6)0.049 (6)0.056 (6)0.023 (5)0.020 (5)0.015 (5)
C140.042 (5)0.036 (5)0.037 (5)0.015 (4)0.023 (4)0.008 (4)
C150.048 (6)0.031 (5)0.034 (5)0.010 (4)0.021 (4)0.011 (4)
C160.047 (6)0.032 (5)0.050 (6)0.006 (5)0.022 (5)0.008 (4)
C170.057 (7)0.057 (7)0.030 (5)0.019 (5)0.018 (4)0.001 (4)
C180.063 (7)0.058 (7)0.023 (5)0.019 (6)0.005 (5)0.006 (4)
C190.044 (6)0.049 (6)0.051 (6)0.003 (5)0.009 (5)0.001 (5)
C200.035 (5)0.044 (6)0.044 (5)0.011 (5)0.018 (4)0.004 (4)
C210.039 (5)0.047 (6)0.040 (5)0.006 (5)0.014 (4)0.010 (4)
C220.048 (6)0.046 (6)0.034 (5)0.001 (5)0.016 (4)0.004 (4)
C230.053 (6)0.038 (6)0.040 (5)0.001 (5)0.014 (5)0.001 (4)
C240.041 (5)0.037 (5)0.037 (5)0.002 (4)0.021 (4)0.006 (4)
C250.046 (6)0.025 (5)0.039 (5)0.005 (4)0.015 (4)0.002 (4)
C260.045 (6)0.035 (5)0.042 (5)0.016 (5)0.020 (4)0.010 (4)
Geometric parameters (Å, º) top
Zn1—N3i2.127 (8)O4—H4B0.8500
Zn1—N42.144 (8)C1—C21.331 (16)
Zn1—N10ii2.192 (8)C1—C61.353 (15)
Zn1—N72.197 (7)C2—C31.374 (15)
Zn1—Cl12.418 (3)C2—H2A0.9300
Zn1—Cl1iii2.732 (3)C3—C41.402 (13)
F1—C11.380 (13)C4—C51.387 (13)
F2—C31.349 (12)C4—C71.487 (13)
F3—C161.345 (12)C5—C61.367 (15)
F4—C181.368 (11)C5—H50.9300
N1—C91.317 (12)C6—H60.9300
N1—N21.351 (11)C7—C81.521 (13)
N1—C81.500 (12)C7—C131.554 (13)
N2—C101.297 (13)C8—H8A0.9700
N3—C91.312 (13)C8—H8B0.9700
N3—C101.366 (12)C9—H90.9300
N4—C241.317 (12)C10—H100.9300
N4—C251.354 (12)C11—H110.9300
N5—C241.323 (12)C12—H120.9300
N5—N61.375 (10)C13—H13A0.9700
N5—C261.446 (12)C13—H13B0.9700
N6—C251.317 (12)C14—C211.524 (13)
N7—C121.342 (13)C14—C151.533 (12)
N7—C111.376 (12)C14—C261.542 (11)
N8—C111.314 (12)C15—C161.346 (14)
N8—N91.356 (11)C15—C201.406 (13)
N9—C121.327 (11)C16—C171.384 (13)
N9—C131.452 (12)C17—C181.369 (15)
N10—C221.343 (12)C17—H170.9300
N10—C231.367 (12)C18—C191.359 (16)
N11—C231.262 (12)C19—C201.363 (13)
N11—N121.350 (10)C19—H190.9300
N12—C221.306 (12)C20—H200.9300
N12—C211.462 (11)C21—H21A0.9700
O1—C71.415 (10)C21—H21B0.9700
O1—H10.8200C22—H220.9300
O2—C141.415 (11)C23—H230.9300
O2—H20.8200C24—H240.9300
O3—H3A0.8499C25—H250.9300
O3—H3B0.8500C26—H26A0.9700
O4—H4A0.8500C26—H26B0.9700
N3i—Zn1—N4175.2 (3)N1—C8—C7111.8 (8)
N3i—Zn1—N10ii88.7 (3)N1—C8—H8A109.3
N4—Zn1—N10ii88.0 (3)C7—C8—H8A109.3
N3i—Zn1—N786.0 (3)N1—C8—H8B109.3
N4—Zn1—N790.5 (3)C7—C8—H8B109.3
N10ii—Zn1—N791.2 (3)H8A—C8—H8B107.9
N3i—Zn1—Cl193.0 (2)N3—C9—N1109.5 (9)
N4—Zn1—Cl190.9 (2)N3—C9—H9125.3
N10ii—Zn1—Cl1168.89 (19)N1—C9—H9125.3
N7—Zn1—Cl199.8 (2)N2—C10—N3115.1 (9)
N3i—Zn1—Cl1iii89.1 (2)N2—C10—H10122.5
N4—Zn1—Cl1iii94.2 (2)N3—C10—H10122.5
N10ii—Zn1—Cl1iii86.6 (2)N8—C11—N7114.2 (10)
N7—Zn1—Cl1iii174.7 (2)N8—C11—H11122.9
Cl1—Zn1—Cl1iii82.44 (8)N7—C11—H11122.9
Zn1—Cl1—Zn1iii97.56 (8)N9—C12—N7108.9 (9)
C9—N1—N2111.4 (9)N9—C12—H12125.6
C9—N1—C8126.6 (9)N7—C12—H12125.6
N2—N1—C8122.0 (8)N9—C13—C7110.6 (7)
C10—N2—N1101.5 (8)N9—C13—H13A109.5
C9—N3—C10102.6 (8)C7—C13—H13A109.5
C9—N3—Zn1iv127.0 (7)N9—C13—H13B109.5
C10—N3—Zn1iv127.3 (7)C7—C13—H13B109.5
C24—N4—C25103.4 (8)H13A—C13—H13B108.1
C24—N4—Zn1125.4 (7)O2—C14—C21109.9 (8)
C25—N4—Zn1131.1 (7)O2—C14—C15106.4 (7)
C24—N5—N6110.1 (7)C21—C14—C15113.6 (7)
C24—N5—C26127.4 (8)O2—C14—C26107.9 (7)
N6—N5—C26122.4 (8)C21—C14—C26107.4 (7)
C25—N6—N5101.7 (7)C15—C14—C26111.5 (8)
C12—N7—C11102.9 (8)C16—C15—C20116.5 (9)
C12—N7—Zn1126.3 (6)C16—C15—C14123.5 (9)
C11—N7—Zn1128.3 (7)C20—C15—C14119.9 (9)
C11—N8—N9102.4 (8)C15—C16—F3120.6 (9)
C12—N9—N8111.5 (8)C15—C16—C17124.4 (10)
C12—N9—C13126.0 (9)F3—C16—C17115.0 (10)
N8—N9—C13122.1 (7)C18—C17—C16115.8 (10)
C22—N10—C23101.2 (8)C18—C17—H17122.1
C22—N10—Zn1ii128.2 (7)C16—C17—H17122.1
C23—N10—Zn1ii129.6 (6)C19—C18—C17123.1 (9)
C23—N11—N12103.6 (7)C19—C18—F4118.8 (10)
C22—N12—N11110.1 (7)C17—C18—F4118.0 (10)
C22—N12—C21129.4 (8)C18—C19—C20118.6 (10)
N11—N12—C21120.5 (8)C18—C19—H19120.7
C7—O1—H1109.5C20—C19—H19120.7
C14—O2—H2109.5C19—C20—C15121.3 (10)
H3A—O3—H3B108.7C19—C20—H20119.4
H4A—O4—H4B119.4C15—C20—H20119.4
C2—C1—C6123.2 (12)N12—C21—C14112.1 (8)
C2—C1—F1118.7 (10)N12—C21—H21A109.2
C6—C1—F1118.0 (11)C14—C21—H21A109.2
C1—C2—C3117.2 (10)N12—C21—H21B109.2
C1—C2—H2A121.4C14—C21—H21B109.2
C3—C2—H2A121.4H21A—C21—H21B107.9
F2—C3—C2118.5 (9)N12—C22—N10109.7 (8)
F2—C3—C4117.7 (10)N12—C22—H22125.1
C2—C3—C4123.8 (9)N10—C22—H22125.1
C5—C4—C3114.2 (10)N11—C23—N10115.4 (8)
C5—C4—C7121.1 (8)N11—C23—H23122.3
C3—C4—C7124.7 (8)N10—C23—H23122.3
C6—C5—C4122.7 (9)N4—C24—N5110.2 (9)
C6—C5—H5118.6N4—C24—H24124.9
C4—C5—H5118.6N5—C24—H24124.9
C1—C6—C5118.6 (10)N6—C25—N4114.7 (8)
C1—C6—H6120.7N6—C25—H25122.6
C5—C6—H6120.7N4—C25—H25122.6
O1—C7—C4112.2 (7)N5—C26—C14110.9 (7)
O1—C7—C8109.6 (8)N5—C26—H26A109.5
C4—C7—C8110.1 (8)C14—C26—H26A109.5
O1—C7—C13104.5 (7)N5—C26—H26B109.5
C4—C7—C13111.2 (8)C14—C26—H26B109.5
C8—C7—C13109.0 (7)H26A—C26—H26B108.1
Symmetry codes: (i) x+1, y, z; (ii) x+2, y, z+1; (iii) x+3, y+1, z+1; (iv) x1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2v0.822.293.103 (7)172
O2—H2···O4v0.821.872.653 (9)160
O3—H3A···Cl2vi0.852.323.163 (11)170
O3—H3B···Cl1iv0.852.383.221 (10)170
O4—H4A···O2vii0.852.242.784 (9)122
O4—H4B···Cl20.852.293.101 (8)160
Symmetry codes: (iv) x1, y, z; (v) x+1, y+1, z+1; (vi) x+1, y+2, z+1; (vii) x1, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···Cl2i0.822.293.103 (7)172
O2—H2···O4i0.821.872.653 (9)160
O3—H3A···Cl2ii0.852.323.163 (11)170
O3—H3B···Cl1iii0.852.383.221 (10)170
O4—H4A···O2iv0.852.242.784 (9)122
O4—H4B···Cl20.852.293.101 (8)160
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x1, y, z; (iv) x1, y+1, z.
 

Acknowledgements

This work was supported by the Innovation Project of Guangxi University for Nationalities.

References

First citationBrandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationBruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGao, J.-S., Ma, D.-S., Ma, Z.-G., Chen, G.-R., Hou, Y.-J. & Ye, L. (2001). Chin. J. Mol. Sci. 17, 17–22.  CAS Google Scholar
First citationHan, H., Song, Y., Hou, H., Fan, Y. & Zhu, Y. (2006a). Dalton Trans. pp. 1972–1980.  Web of Science CSD CrossRef Google Scholar
First citationHan, H., Zhang, S., Hou, H., Fan, Y. & Zhu, Y. (2006b). Eur. J. Inorg. Chem. pp. 1594–1600.  Web of Science CSD CrossRef Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, L., Ling, Y., Peng, F. & Du, M. (2007). J. Mol. Struct. 829, 161–167.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds