supplementary materials


im2439 scheme

Acta Cryst. (2013). E69, m591-m592    [ doi:10.1107/S1600536813027323 ]

Di-[mu]-acetato-[kappa]4O:O'-bis­[(1,10-phenanthroline-[kappa]2N,N')(tri­fluoro­methane­sulfonato-[kappa]O)copper(II)]

N. Wannarit, C. Pakawatchai and S. Youngme

Abstract top

The complete molecule of the title compound, [Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2], is completed by the application of a twofold rotation and comprises two CuII ions, each of which is penta­coordinated by two N atoms from a bidentate 1,10-phenanthroline (phen) ligand, two O atoms from acetate ligands and an O atom from a tri­fluoro­methane­sulfonate anion, forming a (4 + 1) distorted square-pyramidal coordination geometry. The CuII ions are connected by two acetate bridges in a syn-syn configuration. The F atoms of the tri­fluoro­methane­sulfonate ligands are disordered, with site-occupation factors of 70 and 30. The molecular structure is stabilized by intra­molecular face-to-face [pi]-[pi] inter­actions with centroid-centroid distances in the range 3.5654 (12)-3.8775(12) Å. The crystal structure is stabilized by C-H...O interactions, leading to a three-dimensional lattice structure.

Comment top

The synthesis and characterization of polycarboxylato-bridged dinuclear copper(II) compounds namely dinuclear tetracarboxylato-bridged CuII compounds (paddlewheel-like structure) (e.g. Moreira et al., 2007; Youngme et al., 2008) and also dinuclear CuII compounds containing dicarboxylato-bridges (Tokii et al., 1990; Reinoso et al., 2005; Ritchie et al., 2006) have attacted much attention in several years. These compounds have been prepared with the aim of studying their intramolecular magnetic properties which are determined predominantly by strong antiferromagnetic interactions. In addition, the dicarboxylato-bridged dinuclear CuII compounds have been frequently used as the models for the basic understanding of their magneto-structural correlations in theoretical studies (Moreira et al., 2007; Calvo et al., 2011). Copper(II) compounds containing doubly acetato-bridged dinuclear units, [Cu(phen)(µ-OOCCH3)2Cu(phen)]2+ (where phen = 1,10-phenanthroline), have also been shown to exhibit antiferromagnetic behavior (Tokii et al., 1990). Furthermore, this type of dinuclear unit was used as the secondary building block in functionalized polyoxometalate (POMs) materials (Wang et al., 2006; Reinoso et al., 2007; Calvo et al., 2011) to extend the dimensionality of structures leading to new hybrid materials and more selective applications, for example catalytic properties in organic oxidations (Hill & Brown, 1986; Mansuy et al., 1991; Hill, & Zhang, 1995).

A new doubly acetato-bridged dinuclear CuII compound containing additional trifluoromethanesulfonate anions has been synthesized and its structural features are reported here. Compound I, bis((µ-acetato)(trifluoromethanesulfonato)(1,10-phenanthroline))dicopper(II) crystallized in the space group C2/c with an asymmetric unit containing one half of the dinuclear unit (Fig.1). This dinuclear unit has C2 symmetry around the b axis with Cu···Cu distance of 3.0309 (4) Å. Structurally, compound I consists of two [Cu(phen)(OSO2CF3)]+ cations connected together by two bridging acetato ligands in a syn-syn configuration. Both CuII atoms exhibit five coordination of CuN2O2O' chromophore, with the basal plane consisting of two phen N atoms [Cu—N = 2.0153 (18) and 1.9980 (18) Å] and two O atoms from acetate ligands [Cu—O = 1.9387 (17) and 1.9377 (18)]. Due to symmetry both square planes are parallel to one another. The apical position at CuII is occupied by an O atom from trifluoromethanesulfonate anion [Cu—O = 2.261 (2)], leading to the (4 + 1) square-pyramidal geometry. The square base of CuII chromophore is not perfectly planar, with the tetrahedral twist of 16.52 (7)° and CuII is situated above the basal plane by 0.14 (1) Å pointing towards the O atom of the trifluoromethanesulfonate anion. The distortion of a square pyramid can be best described by the structural parameter τ (τ = 0 for a square pyramid and τ =1 for a trigonal bipyramid (Addison et al., 1984)), with τ = 0.23 for the title compound. The molecular structure of I reveals intramolecular face-to-face π-π interaction between aromatic rings of phen ligands (Fig. 1). Phenanthroline molecules are parallel with an average contact and angle of phen planes of 3.63 (3) Å and 5.96 (3)°, respectively. In general, the ligands are featureless: neither of phen group departs significantly from planarity [maximum deviations: 0.082 Å for C11 and 0.099 Å for C10 of Cg3 ring(N2, C6, C9, C10, C11, C12)] and the C—O bonds in the acetato bridging ligands display an almost perfect resonance [C13 O1 = 1.257 (3) Å and C13O2 = 1.250 (3) Å]. The crystal structure of compound I is determined by intermolecular hydrogen bonding interactions between methyl groups of acetato ligands (H14A) or phen ligands (H7 as hydrogen bond donor sites and H10) and oxygen/fluoride accepetors at trifluoromethanesulfonate anions (O3, O5 and F3) (see Table 1), generating two-dimensional layers parallel to the ab plane (Fig. 2). Moreover, these two-dimensional sheets are interconnected by hydrogen bond interactions between C—H of phen ligands and oxygen atoms of trifluoromethanesulfonate anions [C1—H1···O5i; symetry code (i) = -x+1, -y+2, -z+1] (see Table 2) in direction of crystallographic c axis, leading to three-dimensional lattice structure (Fig. 3). Although containing the same [(phen)Cu(µ-OOCCH3)2Cu(phen)]2+ unit, the structural topology of I is distinct from that of the related compound [Cu(phen)(µ-O2CCH3)(H2O)]2(NO3)2.4H2O (Tokii et al., 1990) in which the apical position is occupied by water molecule. The dinuclear unit of this related compound also crystallized in C2/c space group and has C2 symmetry around the b axis with Cu···Cu distance of 3.063 Å, but its crystal lattice is mainly stabilized by intra- and intermolecular π-π interactions, generating a one-dimensional chain-like sructure. It is clear that the difference of the structural topology between compound I and the related compound caused by the effect of coordinated trifluoromethanesulfonate anions whereas nitrate anions are not coordinated to Cu in the other structure.

The diffuse reflectance spectrum of I displays a broad band at 15400 cm-1 and a lower energy shoulder at 14300 cm-1. This feature corresponds to a dominantly distorted square pyramidal geometry of CuII ions and is consistent with the observed structural parameters. The transitions may be assigned as dxy, dyz, dxz dx2-y2 and dz2 dx2-y2. The IR spectrum of I, in addition to the phen vibrations shows the broad and intense bands of the stretching of the ionic CF3SO3- at 1276 νas(S–O), 1158 νas(C–F) and 1031 νs(S–O) cm-1 (Castro et al., 1992). The IR spectrum also shows two broad and intense bands at 1567 and 1385 cm-1, corresponding to the νas(COO-) and νs(COO-) vibrations of acetate bridging ligands. The latter spectral properties completely disappear for related mononuclear compounds as [Cu(phen)3](CF3SO3)2.H2O (Sletten & Julve, 1999).

Related literature top

For general background to this work, see: Moreira et al. (2007); Calvo et al. (2011); Reinoso et al. (2005); Ritchie et al. (2006); Wang et al. (2006). For literature used in the synthetic procedures, see: Youngme et al. (2008). For a related crystal structure, see: Tokii et al. (1990). For potential applications, see: Hill & Brown (1986); Mansuy et al. (1991); Hill & Zhang (1995). For an explanation of the τ parameter, see: Addison et al. (1984). For additional related literature, see: Castro et al. (1992); Reinoso et al. (2007); Sletten & Julve (1999).

Experimental top

A warm ethanolic solution (25 ml) of phen (0.198 g, 1.0 mmol) was added to a warm aqueous solution (15 ml) of Cu(CF3SO3)2 (0.370 g, 1.0 mmol). Then NaO2CCH3 solid (0.124 g, 1.0 mmol) was added to the mixture, yielding a clear dark blue solution. After a week, the blue rectangle-shaped crystals of compound I were obtained. The crystals were filtered off, washed with mother liquor and air-dried. Yield: ca 45%. Anal. Calc. for Cu2C30H24N4O10F6S2: C, 39.78; H, 2.67; N, 6.19%. Found: C, 39.12; H, 2.51; N, 6.36%.

Refinement top

All H atoms were constrained to ideal positions, with C—H = 0.93 Å and Uiso(H) =1.2Ueq(C) for H atoms at phen and C—H = 0.96 Å and Uiso(H) =1.2Ueq(C) for H atoms of acetate groups. Fluorine atoms of the trifluoromethanesulfonato ligands are disordered with site occupation factors of 70:30%.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART (Bruker, 2000); data reduction: SAINT (Bruker, 2000) and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: PLATON (Spek, 2009) and pubCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure and atomic numbering scheme with thermal ellipsoids shown at 50% probability level.
[Figure 2] Fig. 2. The crystal packing. View of two-dimensional layer constructed by intermolecular hydrogen bonding and view of the intramolecular face-to-face π-π interactions between aromatic rings of phen ligands.
[Figure 3] Fig. 3. The crystal packing. View of three-dimensional framework (side view) constructued by intermolecular hydrogen bonding interactions between two-dimensional layers (C1—H1···O5i, symmetry code: (i) = -x+1, -y+2, -z+1).
Di-µ-acetato-κ4O:O'-bis[(1,10-phenanthroline-κ2N,N')(trifluoromethanesulfonato-κO)copper(II)] top
Crystal data top
[Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2]F(000) = 1816
Mr = 903.72Dx = 1.741 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8485 reflections
a = 13.1198 (5) Åθ = 2.3–26.4°
b = 16.1282 (6) ŵ = 1.45 mm1
c = 16.3659 (6) ÅT = 293 K
β = 95.507 (1)°Block, blue
V = 3447.0 (2) Å30.24 × 0.21 × 0.18 mm
Z = 4
Data collection top
Bruker SMART APEX CCD
diffractometer
4178 independent reflections
Radiation source: fine-focus sealed tube3491 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
phi and ω scansθmax = 28.1°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
h = 1717
Tmin = 0.872, Tmax = 1.000k = 2121
23313 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0624P)2 + 1.5014P]
where P = (Fo2 + 2Fc2)/3
4178 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
[Cu2(C2H3O2)2(CF3O3S)2(C12H8N2)2]V = 3447.0 (2) Å3
Mr = 903.72Z = 4
Monoclinic, C2/cMo Kα radiation
a = 13.1198 (5) ŵ = 1.45 mm1
b = 16.1282 (6) ÅT = 293 K
c = 16.3659 (6) Å0.24 × 0.21 × 0.18 mm
β = 95.507 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
4178 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2000)
3491 reflections with I > 2σ(I)
Tmin = 0.872, Tmax = 1.000Rint = 0.022
23313 measured reflectionsθmax = 28.1°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.102Δρmax = 0.37 e Å3
S = 1.04Δρmin = 0.32 e Å3
4178 reflectionsAbsolute structure: ?
272 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All e.s.d.'s are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.59608 (2)0.99743 (1)0.70547 (2)0.0458 (1)
S10.78035 (4)1.01647 (3)0.56674 (3)0.0539 (2)
F10.8335 (6)0.8733 (4)0.6161 (4)0.176 (4)0.700
F20.9340 (5)0.9174 (4)0.5429 (4)0.137 (2)0.700
F30.9359 (6)0.9687 (6)0.6618 (6)0.199 (4)0.700
O10.63242 (11)1.07473 (9)0.79413 (10)0.0626 (5)
O20.51246 (12)1.08054 (9)0.64547 (10)0.0608 (5)
O30.73435 (13)1.03226 (11)0.64052 (11)0.0712 (6)
O40.8331 (2)1.08491 (14)0.53822 (17)0.1123 (10)
O50.7149 (2)0.97542 (18)0.50650 (17)0.1224 (11)
N10.53445 (12)0.90229 (9)0.63975 (10)0.0449 (5)
N20.68014 (12)0.90588 (10)0.76211 (9)0.0472 (5)
C10.46043 (16)0.90316 (14)0.57797 (12)0.0556 (7)
C20.41990 (18)0.83081 (17)0.54255 (14)0.0640 (8)
C30.45639 (18)0.75590 (15)0.56951 (15)0.0633 (8)
C40.53672 (15)0.75244 (12)0.63350 (13)0.0509 (6)
C50.57234 (13)0.82808 (11)0.66659 (11)0.0423 (5)
C60.65295 (13)0.82997 (11)0.73215 (11)0.0430 (5)
C70.58190 (18)0.67773 (13)0.66651 (17)0.0649 (8)
C80.65946 (18)0.67936 (13)0.72685 (16)0.0642 (8)
C90.69878 (15)0.75606 (13)0.76071 (13)0.0526 (6)
C100.78116 (18)0.76280 (16)0.82166 (15)0.0664 (8)
C110.81020 (18)0.83952 (18)0.85040 (15)0.0701 (8)
C120.75733 (17)0.91011 (15)0.82085 (13)0.0605 (7)
C130.57629 (16)1.10508 (11)0.84421 (13)0.0514 (6)
C140.6188 (2)1.17618 (14)0.89565 (17)0.0706 (8)
C150.8783 (3)0.9414 (2)0.5977 (2)0.0953 (14)
F3A0.9596 (9)0.9817 (7)0.6337 (13)0.153 (7)0.300
F1A0.8515 (8)0.8809 (8)0.6463 (7)0.083 (3)0.300
F2A0.9048 (15)0.9173 (13)0.5189 (12)0.193 (8)0.300
H10.435200.953900.558000.0670*
H20.367500.833600.500100.0770*
H30.428800.707300.546100.0760*
H70.557400.627000.646000.0780*
H120.776600.961600.842900.0730*
H14A0.689701.183800.887600.1060*
H14B0.612401.164600.952500.1060*
H14C0.581401.225700.879900.1060*
H80.688000.629700.746800.0770*
H100.815500.715700.842200.0800*
H110.865600.844800.890000.0840*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0501 (2)0.0364 (1)0.0522 (2)0.0032 (1)0.0111 (1)0.0044 (1)
S10.0583 (3)0.0503 (3)0.0537 (3)0.0031 (2)0.0083 (2)0.0036 (2)
F10.280 (8)0.069 (3)0.194 (7)0.081 (4)0.099 (6)0.051 (4)
F20.115 (3)0.157 (5)0.152 (4)0.072 (3)0.077 (4)0.039 (4)
F30.128 (6)0.280 (9)0.172 (5)0.051 (5)0.073 (5)0.031 (5)
O10.0620 (9)0.0553 (8)0.0732 (10)0.0075 (7)0.0200 (7)0.0240 (7)
O20.0659 (9)0.0482 (7)0.0716 (9)0.0163 (7)0.0235 (7)0.0118 (7)
O30.0704 (10)0.0658 (10)0.0820 (11)0.0007 (8)0.0305 (9)0.0070 (9)
O40.135 (2)0.0787 (14)0.1311 (19)0.0137 (13)0.0530 (16)0.0345 (13)
O50.127 (2)0.131 (2)0.0992 (18)0.0116 (17)0.0404 (16)0.0369 (16)
N10.0464 (8)0.0425 (8)0.0464 (8)0.0047 (6)0.0076 (6)0.0021 (6)
N20.0475 (8)0.0505 (9)0.0444 (8)0.0024 (7)0.0084 (6)0.0017 (6)
C10.0570 (11)0.0594 (12)0.0500 (11)0.0093 (9)0.0027 (9)0.0019 (9)
C20.0589 (12)0.0782 (16)0.0539 (12)0.0017 (10)0.0005 (9)0.0116 (10)
C30.0647 (13)0.0629 (13)0.0634 (13)0.0117 (10)0.0125 (10)0.0195 (10)
C40.0527 (10)0.0442 (9)0.0586 (11)0.0023 (8)0.0194 (9)0.0061 (8)
C50.0433 (8)0.0400 (8)0.0458 (9)0.0023 (7)0.0154 (7)0.0022 (7)
C60.0423 (8)0.0433 (9)0.0456 (9)0.0042 (7)0.0154 (7)0.0017 (7)
C70.0725 (14)0.0384 (10)0.0869 (16)0.0017 (9)0.0240 (13)0.0038 (10)
C80.0719 (14)0.0399 (10)0.0845 (16)0.0131 (9)0.0271 (12)0.0100 (10)
C90.0505 (10)0.0547 (11)0.0554 (11)0.0112 (8)0.0189 (9)0.0101 (9)
C100.0628 (13)0.0766 (15)0.0608 (13)0.0211 (11)0.0104 (10)0.0149 (11)
C110.0553 (12)0.1009 (19)0.0528 (12)0.0110 (12)0.0016 (10)0.0062 (12)
C120.0567 (11)0.0728 (14)0.0515 (11)0.0018 (10)0.0028 (9)0.0072 (10)
C130.0623 (11)0.0364 (8)0.0575 (11)0.0067 (8)0.0154 (9)0.0053 (8)
C140.0791 (15)0.0531 (12)0.0838 (16)0.0205 (11)0.0291 (13)0.0256 (11)
C150.083 (2)0.098 (2)0.109 (3)0.0357 (18)0.0305 (19)0.0181 (19)
F3A0.046 (3)0.082 (5)0.32 (2)0.000 (3)0.039 (7)0.004 (8)
F1A0.093 (4)0.075 (5)0.087 (5)0.038 (3)0.042 (3)0.038 (4)
F2A0.165 (14)0.234 (16)0.185 (14)0.086 (10)0.037 (10)0.120 (12)
Geometric parameters (Å, º) top
Cu1—O11.9376 (16)C3—C41.414 (3)
Cu1—O21.9385 (16)C4—C51.397 (3)
Cu1—O32.2597 (18)C4—C71.426 (3)
Cu1—N11.9995 (15)C5—C61.433 (2)
Cu1—N22.0148 (16)C6—C91.395 (3)
S1—O31.4237 (18)C7—C81.349 (4)
S1—O41.406 (2)C8—C91.431 (3)
S1—O51.409 (3)C9—C101.403 (3)
S1—C151.803 (4)C10—C111.365 (4)
F1—C151.295 (8)C11—C121.395 (4)
F1A—C151.327 (13)C13—C141.498 (3)
F2—C151.270 (7)C1—H10.9302
F2A—C151.42 (2)C2—H20.9304
F3—C151.309 (10)C3—H30.9304
F3A—C151.337 (15)C7—H70.9299
O1—C131.253 (3)C8—H80.9300
O2—C13i1.256 (3)C10—H100.9295
N1—C11.333 (3)C11—H110.9301
N1—C51.353 (2)C12—H120.9307
N2—C121.329 (3)C14—H14A0.9598
N2—C61.354 (2)C14—H14B0.9605
C1—C21.386 (3)C14—H14C0.9596
C2—C31.358 (4)
Cu1···O53.760 (3)O4···H3iv2.3363
Cu1···O1i3.2474 (15)O4···H11v2.7477
Cu1···O2i3.2315 (16)O5···H14Bv2.7315
Cu1···N1i3.5407 (16)O5···H1vi2.4275
Cu1···N2i3.9955 (16)N1···Cu1i3.5407 (16)
Cu1···C1i3.991 (2)N2···F1A3.103 (11)
Cu1···C5i4.1970 (18)N2···Cu1i3.9955 (16)
Cu1···H8ii3.5723N2···C1i3.344 (3)
F1···O32.920 (7)C1···C12i3.439 (3)
F1···O52.796 (7)C1···O5vi3.229 (3)
F1···C63.251 (8)C1···N2i3.344 (3)
F1···C14iii3.249 (7)C1···C13i3.546 (3)
F1A···N23.103 (11)C1···Cu1i3.991 (2)
F1A···C63.184 (11)C3···O4vii3.213 (3)
F1A···C123.254 (11)C3···C9i3.599 (3)
F1A···O53.160 (12)C5···C6i3.525 (2)
F1A···O32.881 (12)C5···Cu1i4.1970 (18)
F2···O53.027 (7)C5···C5i3.472 (2)
F2···O43.006 (7)C6···C5i3.525 (2)
F2A···O42.89 (2)C6···F1A3.184 (11)
F2A···O52.65 (2)C6···F13.251 (8)
F3···O42.983 (10)C8···O1iii3.256 (3)
F3···O32.826 (8)C9···C3i3.599 (3)
F3A···O42.733 (16)C11···O4viii3.293 (4)
F3A···O33.078 (12)C12···C1i3.439 (3)
F1···H14Ciii2.6275C12···F1A3.254 (11)
F1A···H14Ciii2.7013C13···C13i3.512 (3)
F3A···H7iv2.6700C13···C1i3.546 (3)
O1···C8ii3.256 (3)C13···O5viii3.335 (3)
O1···Cu1i3.2474 (15)C14···O5viii3.228 (4)
O2···Cu1i3.2315 (16)C14···F1ii3.249 (7)
O3···F32.826 (8)C2···H14Bv3.0447
O3···F12.920 (7)C8···H14Aiii2.8533
O3···F3A3.078 (12)C13···H1i2.9284
O3···F1A2.881 (12)H1···C13i2.9284
O4···F32.983 (10)H1···O5vi2.4275
O4···C3iv3.213 (3)H1···O22.6401
O4···F23.006 (7)H3···H72.5822
O4···C11v3.293 (4)H3···O4vii2.3363
O4···F2A2.89 (2)H7···F3Avii2.6700
O4···F3A2.733 (16)H7···H32.5822
O5···Cu13.760 (3)H8···H102.5804
O5···F2A2.65 (2)H8···Cu1iii3.5723
O5···C13v3.335 (3)H8···O1iii2.6624
O5···C14v3.228 (4)H8···O3iii2.5589
O5···F23.027 (7)H10···H82.5804
O5···F1A3.160 (12)H11···O4viii2.7477
O5···F12.796 (7)H12···O12.6934
O5···C1vi3.229 (3)H14A···C8ii2.8533
O1···H122.6934H14B···C2viii3.0447
O1···H8ii2.6624H14B···O5viii2.7315
O2···H12.6401H14C···F1ii2.6275
O3···H8ii2.5589H14C···F1Aii2.7013
O1—Cu1—O291.21 (6)C8—C9—C10124.5 (2)
O1—Cu1—O392.37 (6)C9—C10—C11119.1 (2)
O1—Cu1—N1162.62 (7)C10—C11—C12120.5 (2)
O1—Cu1—N292.44 (6)N2—C12—C11121.8 (2)
O2—Cu1—O391.76 (7)O1—C13—C14117.14 (19)
O2—Cu1—N194.48 (6)O1—C13—O2i125.13 (18)
O2—Cu1—N2176.35 (6)O2i—C13—C14117.73 (19)
O3—Cu1—N1103.84 (7)S1—C15—F1107.9 (4)
O3—Cu1—N288.28 (6)S1—C15—F2116.7 (4)
N1—Cu1—N281.97 (6)S1—C15—F3109.9 (5)
O3—S1—O4113.79 (13)S1—C15—F1A116.1 (5)
O3—S1—O5113.45 (13)S1—C15—F2A99.1 (8)
O3—S1—C15103.33 (13)S1—C15—F3A108.3 (5)
O4—S1—O5115.02 (16)F1—C15—F2102.1 (5)
O4—S1—C15105.09 (16)F1—C15—F3109.8 (6)
O5—S1—C15104.55 (16)F2—C15—F3110.0 (6)
Cu1—O1—C13128.57 (14)F1A—C15—F2A116.4 (10)
Cu1—O2—C13i129.53 (14)F1A—C15—F3A109.8 (9)
Cu1—O3—S1141.19 (11)F2A—C15—F3A106.2 (12)
Cu1—N1—C1128.86 (14)N1—C1—H1118.98
Cu1—N1—C5112.78 (12)C2—C1—H1118.97
C1—N1—C5118.28 (16)C1—C2—H2119.86
Cu1—N2—C6112.49 (12)C3—C2—H2119.87
Cu1—N2—C12129.82 (15)C2—C3—H3120.32
C6—N2—C12117.66 (17)C4—C3—H3120.31
N1—C1—C2122.0 (2)C4—C7—H7119.34
C1—C2—C3120.3 (2)C8—C7—H7119.47
C2—C3—C4119.4 (2)C7—C8—H8119.37
C3—C4—C5116.78 (18)C9—C8—H8119.37
C3—C4—C7124.6 (2)C9—C10—H10120.49
C5—C4—C7118.66 (19)C11—C10—H10120.44
N1—C5—C4123.22 (17)C10—C11—H11119.78
N1—C5—C6116.49 (16)C12—C11—H11119.74
C4—C5—C6120.29 (17)N2—C12—H12119.07
N2—C6—C5116.13 (16)C11—C12—H12119.09
N2—C6—C9124.13 (17)C13—C14—H14A109.53
C5—C6—C9119.74 (17)C13—C14—H14B109.45
C4—C7—C8121.2 (2)C13—C14—H14C109.45
C7—C8—C9121.3 (2)H14A—C14—H14B109.50
C6—C9—C8118.75 (19)H14A—C14—H14C109.50
C6—C9—C10116.73 (19)H14B—C14—H14C109.39
O2—Cu1—O1—C1368.10 (18)Cu1—N1—C1—C2174.67 (16)
O3—Cu1—O1—C13159.91 (17)C5—N1—C1—C21.8 (3)
N2—Cu1—O1—C13111.71 (17)Cu1—N1—C5—C4176.12 (15)
O1—Cu1—O2—C13i78.62 (18)Cu1—N1—C5—C64.0 (2)
O3—Cu1—O2—C13i171.03 (18)C1—N1—C5—C40.9 (3)
N1—Cu1—O2—C13i84.94 (18)C1—N1—C5—C6178.99 (17)
O1—Cu1—O3—S1175.37 (18)Cu1—N2—C6—C50.7 (2)
O2—Cu1—O3—S184.09 (18)Cu1—N2—C6—C9179.80 (15)
N1—Cu1—O3—S110.96 (19)C12—N2—C6—C5177.49 (17)
N2—Cu1—O3—S192.26 (18)C12—N2—C6—C92.0 (3)
O2—Cu1—N1—C10.85 (18)Cu1—N2—C12—C11176.94 (16)
O2—Cu1—N1—C5177.49 (13)C6—N2—C12—C110.9 (3)
O3—Cu1—N1—C193.78 (17)N1—C1—C2—C31.1 (3)
O3—Cu1—N1—C589.58 (13)C1—C2—C3—C40.6 (3)
N2—Cu1—N1—C1180.00 (18)C2—C3—C4—C51.4 (3)
N2—Cu1—N1—C53.37 (13)C2—C3—C4—C7179.5 (2)
O1—Cu1—N2—C6161.25 (13)C3—C4—C7—C8179.0 (2)
O1—Cu1—N2—C1220.80 (18)C5—C4—C7—C81.9 (3)
O3—Cu1—N2—C6106.45 (13)C7—C4—C5—C60.2 (3)
O3—Cu1—N2—C1271.50 (18)C3—C4—C5—N10.7 (3)
N1—Cu1—N2—C62.21 (12)C3—C4—C5—C6179.43 (18)
N1—Cu1—N2—C12175.74 (18)C7—C4—C5—N1179.86 (19)
O4—S1—O3—Cu1146.81 (18)C4—C5—C6—C92.6 (3)
O5—S1—O3—Cu112.8 (2)N1—C5—C6—N22.2 (2)
C15—S1—O3—Cu199.8 (2)N1—C5—C6—C9177.30 (17)
O3—S1—C15—F167.4 (4)C4—C5—C6—N2177.90 (17)
O3—S1—C15—F2178.4 (4)N2—C6—C9—C103.1 (3)
O3—S1—C15—F352.3 (5)C5—C6—C9—C83.8 (3)
O4—S1—C15—F1173.0 (4)C5—C6—C9—C10176.37 (18)
O4—S1—C15—F258.8 (4)N2—C6—C9—C8176.76 (19)
O4—S1—C15—F367.2 (5)C4—C7—C8—C90.6 (4)
O5—S1—C15—F151.5 (4)C7—C8—C9—C62.2 (3)
O5—S1—C15—F262.7 (4)C7—C8—C9—C10178.0 (2)
O5—S1—C15—F3171.3 (5)C8—C9—C10—C11178.5 (2)
Cu1—O1—C13—C14167.96 (15)C6—C9—C10—C111.3 (3)
Cu1—O1—C13—O2i12.1 (3)C9—C10—C11—C121.4 (4)
Cu1—O2—C13i—O1i5.3 (3)C10—C11—C12—N22.6 (4)
Cu1—O2—C13i—C14i174.68 (15)
Symmetry codes: (i) x+1, y, z+3/2; (ii) x+3/2, y+1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2; (iv) x+1/2, y+1/2, z; (v) x, y+2, z1/2; (vi) x+1, y+2, z+1; (vii) x1/2, y1/2, z; (viii) x, y+2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5vi0.932.433.229 (3)144
C3—H3···O4vii0.932.343.213 (3)157
C8—H8···O3iii0.932.563.421 (3)154
Symmetry codes: (iii) x+3/2, y1/2, z+3/2; (vi) x+1, y+2, z+1; (vii) x1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···O5i0.93002.43003.229 (3)144.00
C3—H3···O4ii0.93002.34003.213 (3)157.00
C8—H8···O3iii0.93002.56003.421 (3)154.00
Symmetry codes: (i) x+1, y+2, z+1; (ii) x1/2, y1/2, z; (iii) x+3/2, y1/2, z+3/2.
Acknowledgements top

The authors gratefully acknowledge financial support from the Thailand Research Fund, the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission, through the Advanced Functional Materials Cluster of Khon Kaen University and the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Commission on Higher Education, Ministry of Education, Thailand.

references
References top

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.

Bruker (2000). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Calvo, R., Abud, J. E., Sartoris, R. P. & Santana, R. C. (2011). Phys. Rev. B, 84, 104433, 1–13.

Castro, I., Faus, J., Julve, M., Bois, C., Real, J. A. & Lloret, F. (1992). J. Chem. Soc. Dalton Trans. pp. 47–52.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hill, C. L. & Brown, R. B. (1986). J. Am. Chem. Soc. 108, 536–538.

Hill, C. L. & Zhang, X. (1995). Nature (London), 373, 324–326.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.

Mansuy, D., Bartoli, J. F., Battioni, P., Lyon, D. K. & Finke, R. G. (1991). J. Am. Chem. Soc. 113, 7222–7226.

Moreira, I. P. R., Costa, R., Filatov, M. & Illas, F. (2007). J. Chem. Theory Comput. 3, 764–774.

Reinoso, S., Vitoria, P., Felices, L. S., Lezama, L. & Gutiérrez-Zorrilla, J. M. (2005). Chem. Eur. J. 11, 1538–1548.

Reinoso, S., Vitoria, P., Gutiérrez-Zorrilla, J. M., Lezama, L., Madariaga, J. M., Felices, L. S. & Iturrospe, A. (2007). Inorg. Chem. 46, 4010–4021.

Ritchie, C., Burkholder, E., Kögerler, P. & Cronin, L. (2006). Dalton Trans. pp. 1712–1714.

Sheldrick, G. M. (2000). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sletten, J. & Julve, M. (1999). Acta Chem. Scand. 53, 631–633.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Tokii, T., Watanabe, N., Nakashima, M., Muto, Y., Morooka, M., Ohba, S. & Saito, I. (1990). Bull. Chem. Soc. Jpn, 63, 364–369.

Wang, J.-P., Ren, Q., Zhao, J.-W. & Niu, J.-Y. (2006). Inorg. Chem. Commun. 9, 1281–1285.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Youngme, S., Cheansirisomboon, A., Danvirutai, C., Pakawatchai, C., Chaichit, N., Engkagul, C., van Albada, G. A., Costa, J. S. & Reedijk, J. (2008). Polyhedron, 27, 1875–1882.