supplementary materials


kp2459 scheme

Acta Cryst. (2013). E69, m593-m594    [ doi:10.1107/S1600536813026408 ]

catena-Poly[[di­aqua­bis­([mu]3-5-carboxyl­ato-1H-pyrazole-3-carb­oxy­lic acid-[kappa]3O3:O3;O5)dilithium(I)] monohydrate]

W. Starosta and J. Leciejewicz

Abstract top

The basic structural unit of the title polymeric ribbon, {[Li2(C5H3N2O2)2(H2O)2]·H2O}n, is a centrosymmetric dinuclear complex in which the two LiI ions are bridged by two carboxyl­ato O atoms, to generate a centrosymmetric Li2O2 core. These are connected into a chain along [01-1] by carboxylic acid-carbonyl-O bonds. The tetra­hedral coordination of the LiI cation is completed by an aqua ligand. The carboxylic acid is involved in an intra-ribbon hydrogen bond. A solvate water molecule showing positional (50:50) disorder is observed. Polymeric ribbons along [01-1] are connected by O-H...O, N-H...O and O-H...N hydrogen bonds into a three-dimensional architecture.

Comment top

The structural unit of the title complex is a centrosymmetric dinuclear moiety composed of two LiI ions bridged by two bidentate carboxylato O atoms, each donated by a symmetry related ligand (Fig. 1). The ligand acts in µ3 bridging mode since apart from the bidentate O1 atom, the O4 atom of its second carboxylate group is chelated to a Li(vi) ion in the adjacent dimer. In this way a LiI ion is coordinated by the bridging O1 and O1(ii) atoms, the O4(i) from the adjacent dimer and an aqua O5 atom resulting in a distorted tetrahedral geometry. The Li—O bond distances (Table 1) which fall in the range between 1.930 (2) Å and 1.980 (3) Å are typical of LiI complexes with carboxylate and water ligands. The pyrazole ring is planar with r.m.s. of 0.0009 (1) Å; the carboxylate group C6/O1/O2 and C7/O3/O4 make with it dihedral angles of 2.4 (1)° and 5.5 (1)°, respectively. The carboxylate O2 atom is chelating inactive, the O3 remains protonated and participates as a donor in the short hydrogen bond of 2.516 (2) Å to O2vi in an adjacent dimer. Bond distances and bond angles within the pyrazole ring do not differ from those reported in the structure of the parent acid (Ching et al., 2000). The plane of the Li1,O1,Li(ii),O1(ii) dimer core makes a dihedral angle of 36.1° with the ligand plane. The dimeric units linked by carboxylate O4 atoms form molecular ribbons . A solvate water molecule O6 with 50% site occupancy is present in the asymmetric cell resulting in one molecule per a dimer. Moreover, this water molecule shows 0.5/0.5 positional disorder. The ribbons are held together by a system of hydrogen bonds involving coordinated and crystal water molecules the carboxylate/carboxylato groups and pyrazole N ring atoms (Fig. 2, Table 2).

Related literature top

For the structure of the pyrazole-3,5-dicarboxylic acid hydrate, see: Ching et al. (2000).

Experimental top

1 mmol of pyrazole-3,5-dicarboxylic acid hydrate and ca2 mmol s of lithium hydroxide dissolved in 50 mL of hot, doubly distilled water were boiled under reflux with stirring for six hours and then left to crystallize at room temperature. Colourless single-crystal blocks with two differet shapes deposited after a week. One of the crystals was selected, washed with cold ethanol and dried in the air.

Refinement top

Hydrogen atoms belonging to water molecules, the carboxylate group and hetero-ring N atom were located in a difference map and refined isotropically.

Computing details top

Data collection: KM-4 Software (Kuma, 1996); cell refinement: KM-4 Software (Kuma, 1996); data reduction: DATAPROC (Kuma, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. A fragment of a molecular ribbon showing a dinuclear structural building unit of the title complex with atom labelling scheme and 50% probability displacement ellipsoids. Symmetry code: (i) x, y - 1,z + 1; (ii) -x + 1, -y, -z + 1; (iii): -x + 1, -y + 1, -z.
[Figure 2] Fig. 2. The packing of molecular ribbons via hydrogen bonds viewed along their propagation direction.
catena-Poly[[diaquabis(µ3-5-carboxylato-1H-pyrazole-3-carboxylic acid-κ3O3:O3;O5)dilithium(I)] monohydrate] top
Crystal data top
[Li2(C5H3N2O2)2(H2O)2]·H2OZ = 1
Mr = 378.12F(000) = 194
Triclinic, P1Dx = 1.622 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.2610 (15) ÅCell parameters from 25 reflections
b = 7.5835 (15) Åθ = 6–15°
c = 8.5751 (17) ŵ = 0.15 mm1
α = 68.38 (3)°T = 293 K
β = 89.07 (3)°Blocks, colourless
γ = 63.66 (3)°0.32 × 0.19 × 0.15 mm
V = 387.19 (13) Å3
Data collection top
Kuma KM-4 four-circle
diffractometer
1631 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.051
Graphite monochromatorθmax = 30.1°, θmin = 2.6°
profile data from ω/2θ scanh = 99
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
k = 09
Tmin = 0.963, Tmax = 0.983l = 1111
2319 measured reflections3 standard reflections every 200 reflections
2139 independent reflections intensity decay: 3.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0979P)2 + 0.0513P]
where P = (Fo2 + 2Fc2)/3
2139 reflections(Δ/σ)max < 0.001
148 parametersΔρmax = 0.36 e Å3
4 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Li2(C5H3N2O2)2(H2O)2]·H2Oγ = 63.66 (3)°
Mr = 378.12V = 387.19 (13) Å3
Triclinic, P1Z = 1
a = 7.2610 (15) ÅMo Kα radiation
b = 7.5835 (15) ŵ = 0.15 mm1
c = 8.5751 (17) ÅT = 293 K
α = 68.38 (3)°0.32 × 0.19 × 0.15 mm
β = 89.07 (3)°
Data collection top
Kuma KM-4 four-circle
diffractometer
1631 reflections with I > 2σ(I)
Absorption correction: analytical
(CrysAlis RED; Oxford Diffraction, 2008)
Rint = 0.051
Tmin = 0.963, Tmax = 0.983θmax = 30.1°
2319 measured reflections3 standard reflections every 200 reflections
2139 independent reflections intensity decay: 3.2%
Refinement top
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.139Δρmax = 0.36 e Å3
S = 1.04Δρmin = 0.43 e Å3
2139 reflectionsAbsolute structure: ?
148 parametersAbsolute structure parameter: ?
4 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.31476 (15)0.19235 (16)0.41828 (13)0.0317 (3)
O30.04302 (15)1.06450 (16)0.29666 (13)0.0330 (3)
H30.00661.13260.37790.050*
N20.12574 (16)0.83399 (17)0.01238 (13)0.0229 (2)
O40.30113 (16)0.84618 (17)0.21398 (14)0.0352 (3)
O20.02499 (16)0.33302 (17)0.43139 (13)0.0361 (3)
N10.11472 (16)0.68180 (16)0.13403 (13)0.0219 (2)
C50.08191 (17)0.51952 (18)0.19965 (15)0.0208 (3)
C40.20777 (18)0.56837 (19)0.08850 (15)0.0236 (3)
H40.35120.48840.09770.028*
C30.07157 (18)0.76495 (18)0.04109 (14)0.0209 (3)
C70.12037 (19)0.8962 (2)0.19328 (15)0.0230 (3)
C60.12709 (19)0.33371 (19)0.36231 (15)0.0218 (3)
Li10.4462 (4)0.0115 (4)0.6522 (3)0.0310 (5)
O50.50246 (15)0.15574 (18)0.75835 (14)0.0331 (3)
O60.4576 (4)0.5520 (4)0.5472 (4)0.0493 (6)0.50
H10.225 (4)0.700 (4)0.173 (3)0.046 (6)*
H520.531 (5)0.254 (4)0.683 (4)0.070 (8)*
H510.630 (5)0.063 (5)0.832 (4)0.078 (9)*
H620.328 (4)0.602 (6)0.559 (9)0.14 (3)*0.50
H610.508 (15)0.57 (3)0.624 (19)0.38 (11)*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0179 (4)0.0260 (5)0.0233 (4)0.0000 (4)0.0017 (3)0.0056 (4)
O30.0216 (5)0.0280 (5)0.0247 (5)0.0075 (4)0.0030 (4)0.0095 (4)
N20.0175 (5)0.0181 (5)0.0188 (5)0.0056 (4)0.0027 (3)0.0038 (4)
O40.0215 (5)0.0304 (5)0.0329 (5)0.0091 (4)0.0097 (4)0.0044 (4)
O20.0212 (5)0.0292 (5)0.0296 (5)0.0066 (4)0.0068 (4)0.0106 (4)
N10.0148 (5)0.0178 (5)0.0188 (5)0.0047 (4)0.0032 (3)0.0034 (4)
C50.0156 (5)0.0166 (5)0.0182 (5)0.0050 (4)0.0025 (4)0.0019 (4)
C40.0150 (5)0.0183 (5)0.0218 (5)0.0034 (4)0.0040 (4)0.0023 (4)
C30.0173 (5)0.0175 (5)0.0178 (5)0.0067 (4)0.0038 (4)0.0014 (4)
C70.0210 (6)0.0189 (5)0.0195 (5)0.0082 (4)0.0047 (4)0.0006 (4)
C60.0172 (5)0.0173 (5)0.0177 (5)0.0048 (4)0.0018 (4)0.0022 (4)
Li10.0219 (10)0.0268 (11)0.0278 (11)0.0074 (9)0.0077 (8)0.0006 (9)
O50.0173 (4)0.0320 (5)0.0309 (5)0.0070 (4)0.0031 (4)0.0012 (4)
O60.0359 (13)0.0414 (14)0.0517 (15)0.0200 (11)0.0027 (10)0.0030 (11)
Geometric parameters (Å, º) top
O1—C61.2578 (16)C5—C61.4816 (17)
O1—Li1i1.929 (3)C4—C31.3935 (17)
Li1—O11.948 (3)C4—H40.9300
O3—C71.2958 (17)C3—C71.4698 (16)
O3—H30.8200Li1—O4iii1.910 (3)
N2—N11.3298 (14)Li1—O1i1.930 (3)
N2—C31.3436 (16)Li1—O51.981 (3)
O4—C71.2240 (16)Li1—Li1i2.679 (5)
O4—Li1ii1.910 (3)O5—H520.89 (3)
O2—C61.2458 (15)O5—H510.93 (3)
N1—C51.3513 (16)O6—O6iv1.296 (6)
N1—H10.84 (2)O6—H620.87 (2)
C5—C41.3758 (16)O6—H610.86 (2)
C6—O1—Li1i141.01 (13)O3—C7—C3113.68 (11)
C6—O1—Li1128.30 (12)O2—C6—O1126.09 (12)
Li1i—O1—Li187.41 (12)O2—C6—C5116.69 (11)
C7—O3—H3109.5O1—C6—C5117.22 (12)
N1—N2—C3104.63 (10)O4iii—Li1—O1i114.50 (14)
C7—O4—Li1ii136.31 (12)O4iii—Li1—O1118.27 (14)
N2—N1—C5112.49 (10)O1i—Li1—O192.59 (12)
N2—N1—H1117.8 (16)O4iii—Li1—O5111.34 (13)
C5—N1—H1129.7 (16)O1i—Li1—O5114.31 (14)
N1—C5—C4106.99 (10)O1—Li1—O5104.38 (13)
N1—C5—C6120.84 (11)O4iii—Li1—Li1i130.02 (19)
C4—C5—C6132.17 (11)O1i—Li1—Li1i46.58 (9)
C5—C4—C3104.29 (10)O1—Li1—Li1i46.02 (8)
C5—C4—H4127.9O5—Li1—Li1i118.50 (16)
C3—C4—H4127.9Li1—O5—H52111.3 (17)
N2—C3—C4111.59 (11)Li1—O5—H51106.9 (16)
N2—C3—C7120.02 (11)H52—O5—H51101 (2)
C4—C3—C7128.37 (11)O6iv—O6—H62126 (6)
O4—C7—O3125.27 (12)O6iv—O6—H61133 (7)
O4—C7—C3121.04 (12)H62—O6—H61100 (3)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1, z1; (iii) x, y1, z+1; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2ii0.821.732.5159 (16)160
N1—H1···O5v0.84 (2)2.02 (2)2.8233 (17)161 (2)
O5—H52···O60.89 (3)1.94 (3)2.749 (3)150 (3)
O5—H52···O6iv0.89 (3)2.01 (3)2.851 (3)157 (3)
O5—H51···N2vi0.93 (3)1.89 (3)2.810 (2)169 (3)
O5—H51···O3vi0.93 (3)2.60 (3)3.1235 (16)116 (2)
O6—H62···O2v0.87 (2)2.03 (3)2.886 (3)167 (7)
Symmetry codes: (ii) x, y+1, z1; (iv) x+1, y+1, z+1; (v) x, y+1, z+1; (vi) x+1, y1, z+1.
Selected bond lengths (Å) top
Li1—O11.948 (3)Li1—O1ii1.930 (3)
Li1—O4i1.910 (3)Li1—O51.981 (3)
Symmetry codes: (i) x, y1, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O2iii0.821.732.5159 (16)159.5
N1—H1···O5iv0.84 (2)2.02 (2)2.8233 (17)161 (2)
O5—H52···O60.89 (3)1.94 (3)2.749 (3)150 (3)
O5—H52···O6v0.89 (3)2.01 (3)2.851 (3)157 (3)
O5—H51···N2vi0.93 (3)1.89 (3)2.810 (2)169 (3)
O5—H51···O3vi0.93 (3)2.60 (3)3.1235 (16)116 (2)
O6—H62···O2iv0.87 (2)2.03 (3)2.886 (3)167 (7)
Symmetry codes: (iii) x, y+1, z1; (iv) x, y+1, z+1; (v) x+1, y+1, z+1; (vi) x+1, y1, z+1.
Acknowledgements top

No acknowledgments

references
References top

Ching, N., Pan, L., Huang, X. & Li, J. (2000). Acta Cryst. C56, 1124–1125.

Kuma (1996). KM-4 Software. Kuma Diffraction Ltd, Wrocław, Poland.

Kuma (2001). DATAPROC. Kuma Diffraction Ltd, Wrocław, Poland.

Oxford Diffraction (2008). CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.