organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

N,N,N′-Tris[(1H-indol-3-yl)meth­yl]ethane-1,2-di­amine

aWuhan University of Science and Technology, Hubei, Wuhan 430081, People's Republic of China
*Correspondence e-mail: yanwatercn@wust.edu.cn

(Received 8 September 2013; accepted 14 October 2013; online 19 October 2013)

In the title mol­ecule, C29H29N5, the indole ring systems are essentially planar, with maximum deviations of 0.020 (2), 0.023 (2) and 0.016 (2) Å. The dihedral angles formed between the mean planes of the three indole ring systems are 38.08 (7), 89.64 (8) and 58.28 (8)°. In the crystal, mol­ecules are connected by N—H⋯N hydrogen bonds, forming inversion dimers. An intra­molecular N—H⋯N hydrogen bond is also observed.

Related literature

For applications of indole compounds and for related structures, see: Shimazaki et al.(2009[Shimazaki, Y., Yajima, T., Takani, M. & Yamauchi, O. (2009). Coord. Chem. Rev. 253, 479-492.]); Takani et al. (2006[Takani, M., Takeda, T., Yajima, T. & Yamauchi, O. (2006). Inorg. Chem. 45, 5938-5946.]); Munjal et al. (2010[Munjal, M. & Gupta, R. (2010). Inorg. Chim. Acta, 363, 2734-2742.]); Zhu et al. (2012[Zhu, X., Zhou, S., Wang, S., Wei, Y., Zhang, L., Wang, F., Wang, S. & Feng, Z. (2012). Chem. Commun. 48. 12020-12022.]).

[Scheme 1]

Experimental

Crystal data
  • C29H29N5

  • Mr = 447.57

  • Monoclinic, P 21 /c

  • a = 13.769 (3) Å

  • b = 10.832 (2) Å

  • c = 16.910 (3) Å

  • β = 106.512 (3)°

  • V = 2418.2 (8) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 298 K

  • 0.16 × 0.15 × 0.10 mm

Data collection
  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.988, Tmax = 0.993

  • 12582 measured reflections

  • 4486 independent reflections

  • 2785 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.114

  • S = 0.99

  • 4486 reflections

  • 319 parameters

  • 4 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.12 e Å−3

  • Δρmin = −0.17 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N4—H4⋯N2i 0.92 (2) 2.03 (2) 2.953 (3) 176 (2)
N2—H2⋯N1 0.83 (2) 2.45 (2) 2.889 (2) 114 (2)
Symmetry code: (i) -x, -y, -z.

Data collection: SMART (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2001[Bruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

The indole group is a benzo-fused, electron rich aromatic compound widely distributed in natural products, which show important biological activities (Shimazaki et al., 2009). Design and synthesis of new transition metal complexes including indole groups are very interesting and important for bioinorganic and bioorganic chemistry. The indole ring system has been shown to have versatile metal binding abilities involving a metal ion with both nitrogen and carbon atoms (Takani et al.2006; Munjal et al.2010; Zhu et al.2012). During the condensation reaction of ethylenediamine and 1H-indole-3-carbaldehyde, the title compound was obtained as a side-product. Herein we report the crystal structure of the title compound (I).

The molecular structure of (I) is shown in Fig. 1. The indole ring systems are essentially planar with maximum deviations in each ring of 0.020 (2), 0.023 (2) and 0.016 (2)Å for N3, C19 and C22, respectively. The dihedral angles formed between the three indole ring systems are 38.08 (7)° for C4-C11/N3 and C13-C20/N4, 89.64 (8)° for C4-C11/N3 and C22-C29/N5, and 58.28 (8)° for C13-C20/N4 and C22-C29/N5. In the crystal, molecules are connected by N—H···N hydrogen bonds, forming inversion dimers. An intramolecular N—H···N hydrogen bond is also observed (Table 1). .

Related literature top

For applications of indole compounds and for related structures, see: Shimazaki et al.(2009); Takani et al. (2006); Munjal et al. (2010); Zhu et al. (2012).

Experimental top

Ethylenediamine (0.6 g, 10 mmol) and 1H-indole-3-carbaldehyde (2.9 g, 20 mmol) were dissolved in methanol (50 ml), sodium cyanoborohydride (2.5 g,40 mmol) was then added and the solution stirring at room temperature for 36 h. The mixture was then poured onto water and extracted with dichloromethane twice. The organic layer was washed with brine, dried over with MgSO4, filtered, and the solvent was removed under reduced pressure. Flash chromatography on a silica column with methanol/dichloromthane (1:3,%v/v) and then recrystallization from methanol solution gave colourless crystals of the title compound (1.35 g,29% yield based on the ethylenediamine).

Refinement top

All carbon-bound H atoms were constrained to their expected geometries [C—H 0.93 and 0.97 Å] and refined with Uiso(H) = 1.2Ueq(C). H atoms bonded to N atoms were refined with the constraint N—H = 0.82 (2)Å and Uiso(H) = 1.2Ueq(N).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
N,N,N'-Tris[(1H-indol-3-yl)methyl]ethane-1,2-diamine top
Crystal data top
C29H29N5F(000) = 952
Mr = 447.57Dx = 1.229 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2164 reflections
a = 13.769 (3) Åθ = 2.4–20.2°
b = 10.832 (2) ŵ = 0.07 mm1
c = 16.910 (3) ÅT = 298 K
β = 106.512 (3)°Block, colourless
V = 2418.2 (8) Å30.16 × 0.15 × 0.10 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
4486 independent reflections
Radiation source: fine-focus sealed tube2785 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ϕ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
h = 1516
Tmin = 0.988, Tmax = 0.993k = 138
12582 measured reflectionsl = 1920
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.056P)2]
where P = (Fo2 + 2Fc2)/3
4486 reflections(Δ/σ)max < 0.001
319 parametersΔρmax = 0.12 e Å3
4 restraintsΔρmin = 0.17 e Å3
Crystal data top
C29H29N5V = 2418.2 (8) Å3
Mr = 447.57Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.769 (3) ŵ = 0.07 mm1
b = 10.832 (2) ÅT = 298 K
c = 16.910 (3) Å0.16 × 0.15 × 0.10 mm
β = 106.512 (3)°
Data collection top
Bruker SMART CCD
diffractometer
4486 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
2785 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.993Rint = 0.032
12582 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0444 restraints
wR(F2) = 0.114H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.12 e Å3
4486 reflectionsΔρmin = 0.17 e Å3
319 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.21660 (15)0.20856 (19)0.00132 (12)0.0548 (5)
H1A0.24230.24680.04320.066*
H1B0.15260.16920.02870.066*
C20.29084 (15)0.11279 (19)0.04444 (12)0.0560 (5)
H2A0.30450.05380.00580.067*
H2B0.35420.15210.07360.067*
C30.32167 (15)0.0165 (2)0.16844 (13)0.0572 (6)
H3A0.37820.03770.19320.069*
H3B0.34750.08680.14510.069*
C40.27550 (14)0.06000 (18)0.23321 (12)0.0490 (5)
C50.17503 (15)0.07432 (19)0.22497 (13)0.0569 (6)
H50.12340.05720.17730.068*
C60.25247 (14)0.13274 (18)0.35366 (12)0.0496 (5)
C70.32704 (14)0.09563 (17)0.31615 (12)0.0488 (5)
C80.42825 (16)0.0998 (2)0.36324 (14)0.0646 (6)
H80.47960.07580.34080.078*
C90.45039 (17)0.1402 (2)0.44351 (15)0.0749 (7)
H90.51760.14180.47550.090*
C100.37555 (17)0.1784 (2)0.47800 (14)0.0685 (6)
H100.39340.20660.53220.082*
C110.27581 (16)0.1753 (2)0.43353 (13)0.0599 (6)
H110.22530.20120.45650.072*
C120.09756 (14)0.35402 (19)0.03092 (13)0.0559 (6)
H12A0.08110.38160.02590.067*
H12B0.09450.42510.06510.067*
C130.02160 (14)0.26081 (19)0.03937 (12)0.0507 (5)
C140.04813 (15)0.2018 (2)0.02227 (13)0.0579 (6)
H140.05760.21640.07820.069*
C150.06722 (15)0.12209 (19)0.09287 (13)0.0537 (5)
C160.01110 (14)0.21007 (18)0.11443 (12)0.0499 (5)
C170.06024 (15)0.2313 (2)0.19794 (13)0.0589 (6)
H170.11340.28740.21350.071*
C180.02882 (18)0.1681 (2)0.25622 (14)0.0696 (7)
H180.06100.18160.31180.084*
C190.05100 (19)0.0836 (2)0.23338 (16)0.0726 (7)
H190.07180.04330.27430.087*
C200.09945 (17)0.0584 (2)0.15233 (16)0.0670 (6)
H200.15180.00110.13760.080*
C210.27573 (16)0.40222 (19)0.06586 (12)0.0564 (6)
H21A0.25440.45890.01980.068*
H21B0.33980.36640.06450.068*
C220.29158 (14)0.47297 (19)0.14409 (12)0.0517 (5)
C230.27479 (18)0.5946 (2)0.15314 (15)0.0667 (6)
H230.24510.64830.11020.080*
C240.34721 (16)0.5248 (2)0.28034 (14)0.0588 (6)
C250.33709 (15)0.42618 (19)0.22502 (12)0.0509 (5)
C260.37186 (17)0.3112 (2)0.25615 (14)0.0704 (6)
H260.36580.24390.22100.084*
C270.4153 (2)0.2975 (3)0.33937 (16)0.0852 (8)
H270.43830.22010.36040.102*
C280.42564 (19)0.3970 (3)0.39261 (15)0.0812 (8)
H280.45630.38540.44870.097*
C290.39172 (18)0.5112 (3)0.36443 (15)0.0750 (7)
H290.39810.57780.40030.090*
N10.20034 (11)0.30344 (14)0.05540 (9)0.0476 (4)
N20.24795 (13)0.04946 (16)0.10288 (11)0.0525 (5)
H20.2211 (15)0.1029 (17)0.1248 (12)0.063*
N30.16084 (13)0.11738 (18)0.29652 (11)0.0610 (5)
H30.1064 (14)0.135 (2)0.3083 (13)0.073*
N40.10242 (13)0.11849 (18)0.00839 (12)0.0606 (5)
H40.1491 (16)0.066 (2)0.0244 (12)0.073*
N50.30761 (17)0.62689 (19)0.23432 (14)0.0758 (6)
H5A0.3038 (18)0.6959 (18)0.2547 (15)0.091*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0607 (13)0.0539 (13)0.0514 (12)0.0051 (11)0.0184 (10)0.0059 (10)
C20.0567 (12)0.0555 (13)0.0594 (13)0.0005 (11)0.0226 (11)0.0058 (11)
C30.0540 (12)0.0495 (13)0.0697 (14)0.0061 (10)0.0202 (11)0.0013 (11)
C40.0474 (12)0.0402 (11)0.0601 (13)0.0007 (9)0.0166 (10)0.0032 (10)
C50.0516 (13)0.0594 (14)0.0579 (14)0.0006 (11)0.0124 (10)0.0064 (11)
C60.0455 (11)0.0448 (12)0.0587 (13)0.0032 (10)0.0153 (10)0.0102 (10)
C70.0474 (11)0.0388 (11)0.0602 (13)0.0012 (9)0.0152 (10)0.0040 (10)
C80.0466 (12)0.0747 (16)0.0742 (16)0.0027 (11)0.0198 (11)0.0008 (13)
C90.0512 (13)0.100 (2)0.0687 (16)0.0086 (13)0.0087 (11)0.0051 (14)
C100.0651 (15)0.0786 (18)0.0621 (14)0.0072 (13)0.0188 (12)0.0015 (12)
C110.0617 (13)0.0584 (14)0.0629 (15)0.0043 (12)0.0230 (11)0.0054 (11)
C120.0572 (13)0.0482 (13)0.0577 (13)0.0010 (11)0.0088 (10)0.0006 (10)
C130.0462 (11)0.0469 (12)0.0552 (13)0.0008 (10)0.0086 (9)0.0065 (10)
C140.0528 (12)0.0604 (14)0.0586 (13)0.0011 (11)0.0131 (10)0.0038 (11)
C150.0482 (12)0.0524 (13)0.0605 (14)0.0021 (10)0.0156 (10)0.0074 (11)
C160.0452 (11)0.0468 (12)0.0570 (13)0.0059 (10)0.0135 (9)0.0068 (10)
C170.0527 (12)0.0605 (14)0.0607 (14)0.0054 (11)0.0116 (10)0.0093 (11)
C180.0697 (15)0.0787 (17)0.0596 (15)0.0148 (14)0.0169 (12)0.0015 (13)
C190.0759 (16)0.0734 (17)0.0773 (18)0.0112 (14)0.0361 (14)0.0081 (14)
C200.0600 (14)0.0608 (15)0.0851 (18)0.0016 (12)0.0287 (13)0.0036 (13)
C210.0630 (13)0.0547 (13)0.0535 (13)0.0103 (11)0.0196 (10)0.0005 (10)
C220.0518 (12)0.0465 (13)0.0583 (13)0.0074 (10)0.0182 (10)0.0045 (10)
C230.0782 (16)0.0544 (15)0.0695 (16)0.0008 (12)0.0243 (12)0.0005 (12)
C240.0567 (13)0.0581 (15)0.0648 (15)0.0044 (12)0.0224 (11)0.0143 (12)
C250.0513 (12)0.0481 (13)0.0532 (13)0.0072 (10)0.0146 (10)0.0078 (10)
C260.0890 (17)0.0563 (15)0.0599 (15)0.0042 (13)0.0114 (12)0.0058 (12)
C270.102 (2)0.0800 (19)0.0637 (17)0.0137 (16)0.0079 (14)0.0055 (14)
C280.0788 (17)0.105 (2)0.0564 (15)0.0071 (16)0.0134 (13)0.0044 (16)
C290.0732 (16)0.092 (2)0.0612 (16)0.0056 (15)0.0221 (12)0.0276 (14)
N10.0498 (10)0.0429 (10)0.0498 (10)0.0044 (8)0.0139 (8)0.0041 (8)
N20.0521 (10)0.0478 (11)0.0598 (11)0.0021 (9)0.0193 (8)0.0007 (9)
N30.0455 (10)0.0755 (14)0.0633 (12)0.0074 (10)0.0176 (9)0.0044 (10)
N40.0521 (10)0.0605 (12)0.0669 (13)0.0107 (9)0.0129 (9)0.0135 (10)
N50.0988 (15)0.0515 (13)0.0811 (16)0.0023 (12)0.0318 (12)0.0176 (12)
Geometric parameters (Å, º) top
C1—N11.466 (2)C15—N41.373 (3)
C1—C21.507 (3)C15—C201.392 (3)
C1—H1A0.9700C15—C161.407 (3)
C1—H1B0.9700C16—C171.401 (3)
C2—N21.459 (2)C17—C181.367 (3)
C2—H2A0.9700C17—H170.9300
C2—H2B0.9700C18—C191.398 (3)
C3—N21.459 (3)C18—H180.9300
C3—C41.491 (3)C19—C201.370 (3)
C3—H3A0.9700C19—H190.9300
C3—H3B0.9700C20—H200.9300
C4—C51.359 (3)C21—N11.466 (2)
C4—C71.433 (3)C21—C221.490 (3)
C5—N31.362 (3)C21—H21A0.9700
C5—H50.9300C21—H21B0.9700
C6—N31.364 (3)C22—C231.354 (3)
C6—C111.376 (3)C22—C251.427 (3)
C6—C71.410 (3)C23—N51.363 (3)
C7—C81.396 (3)C23—H230.9300
C8—C91.375 (3)C24—N51.373 (3)
C8—H80.9300C24—C291.387 (3)
C9—C101.384 (3)C24—C251.400 (3)
C9—H90.9300C25—C261.383 (3)
C10—C111.366 (3)C26—C271.372 (3)
C10—H100.9300C26—H260.9300
C11—H110.9300C27—C281.385 (3)
C12—N11.463 (2)C27—H270.9300
C12—C131.490 (3)C28—C291.360 (3)
C12—H12A0.9700C28—H280.9300
C12—H12B0.9700C29—H290.9300
C13—C141.359 (3)N2—H20.829 (16)
C13—C161.428 (3)N3—H30.849 (16)
C14—N41.365 (3)N4—H40.92 (2)
C14—H140.9300N5—H5A0.832 (17)
N1—C1—C2110.75 (16)C15—C16—C13107.10 (17)
N1—C1—H1A109.5C18—C17—C16118.9 (2)
C2—C1—H1A109.5C18—C17—H17120.5
N1—C1—H1B109.5C16—C17—H17120.5
C2—C1—H1B109.5C17—C18—C19120.9 (2)
H1A—C1—H1B108.1C17—C18—H18119.5
N2—C2—C1108.99 (16)C19—C18—H18119.5
N2—C2—H2A109.9C20—C19—C18121.9 (2)
C1—C2—H2A109.9C20—C19—H19119.1
N2—C2—H2B109.9C18—C19—H19119.1
C1—C2—H2B109.9C19—C20—C15117.3 (2)
H2A—C2—H2B108.3C19—C20—H20121.3
N2—C3—C4111.29 (16)C15—C20—H20121.3
N2—C3—H3A109.4N1—C21—C22113.73 (16)
C4—C3—H3A109.4N1—C21—H21A108.8
N2—C3—H3B109.4C22—C21—H21A108.8
C4—C3—H3B109.4N1—C21—H21B108.8
H3A—C3—H3B108.0C22—C21—H21B108.8
C5—C4—C7106.02 (18)H21A—C21—H21B107.7
C5—C4—C3126.51 (19)C23—C22—C25106.25 (18)
C7—C4—C3127.47 (17)C23—C22—C21127.9 (2)
C4—C5—N3110.30 (19)C25—C22—C21125.62 (18)
C4—C5—H5124.8C22—C23—N5110.2 (2)
N3—C5—H5124.8C22—C23—H23124.9
N3—C6—C11130.32 (19)N5—C23—H23124.9
N3—C6—C7106.97 (18)N5—C24—C29130.9 (2)
C11—C6—C7122.70 (18)N5—C24—C25106.7 (2)
C8—C7—C6118.10 (19)C29—C24—C25122.4 (2)
C8—C7—C4134.7 (2)C26—C25—C24118.3 (2)
C6—C7—C4107.20 (17)C26—C25—C22134.03 (19)
C9—C8—C7118.6 (2)C24—C25—C22107.65 (19)
C9—C8—H8120.7C27—C26—C25119.4 (2)
C7—C8—H8120.7C27—C26—H26120.3
C8—C9—C10121.9 (2)C25—C26—H26120.3
C8—C9—H9119.1C26—C27—C28121.1 (2)
C10—C9—H9119.1C26—C27—H27119.4
C11—C10—C9120.9 (2)C28—C27—H27119.4
C11—C10—H10119.6C29—C28—C27121.2 (2)
C9—C10—H10119.6C29—C28—H28119.4
C10—C11—C6117.8 (2)C27—C28—H28119.4
C10—C11—H11121.1C28—C29—C24117.6 (2)
C6—C11—H11121.1C28—C29—H29121.2
N1—C12—C13111.60 (16)C24—C29—H29121.2
N1—C12—H12A109.3C12—N1—C1113.12 (15)
C13—C12—H12A109.3C12—N1—C21110.83 (16)
N1—C12—H12B109.3C1—N1—C21110.86 (15)
C13—C12—H12B109.3C2—N2—C3114.63 (16)
H12A—C12—H12B108.0C2—N2—H2107.1 (14)
C14—C13—C16105.83 (18)C3—N2—H2107.7 (15)
C14—C13—C12127.4 (2)C5—N3—C6109.50 (17)
C16—C13—C12126.69 (17)C5—N3—H3130.0 (15)
C13—C14—N4111.3 (2)C6—N3—H3120.5 (15)
C13—C14—H14124.3C14—N4—C15107.88 (18)
N4—C14—H14124.3C14—N4—H4123.2 (13)
N4—C15—C20130.3 (2)C15—N4—H4128.7 (13)
N4—C15—C16107.87 (19)C23—N5—C24109.17 (19)
C20—C15—C16121.8 (2)C23—N5—H5A127.4 (18)
C17—C16—C15119.16 (19)C24—N5—H5A123.4 (18)
C17—C16—C13133.73 (19)
N1—C1—C2—N263.4 (2)C16—C15—C20—C190.8 (3)
N2—C3—C4—C519.5 (3)N1—C21—C22—C23118.0 (2)
N2—C3—C4—C7160.79 (18)N1—C21—C22—C2568.3 (3)
C7—C4—C5—N30.6 (2)C25—C22—C23—N50.5 (3)
C3—C4—C5—N3179.15 (19)C21—C22—C23—N5174.18 (19)
N3—C6—C7—C8178.42 (18)N5—C24—C25—C26179.86 (19)
C11—C6—C7—C81.6 (3)C29—C24—C25—C260.8 (3)
N3—C6—C7—C41.3 (2)N5—C24—C25—C220.9 (2)
C11—C6—C7—C4178.67 (18)C29—C24—C25—C22178.12 (19)
C5—C4—C7—C8178.5 (2)C23—C22—C25—C26179.6 (2)
C3—C4—C7—C81.8 (4)C21—C22—C25—C264.7 (4)
C5—C4—C7—C61.2 (2)C23—C22—C25—C240.9 (2)
C3—C4—C7—C6178.60 (19)C21—C22—C25—C24173.95 (18)
C6—C7—C8—C90.3 (3)C24—C25—C26—C270.4 (3)
C4—C7—C8—C9179.8 (2)C22—C25—C26—C27178.2 (2)
C7—C8—C9—C101.1 (4)C25—C26—C27—C280.5 (4)
C8—C9—C10—C111.2 (4)C26—C27—C28—C291.0 (4)
C9—C10—C11—C60.2 (4)C27—C28—C29—C240.5 (4)
N3—C6—C11—C10178.5 (2)N5—C24—C29—C28179.1 (2)
C7—C6—C11—C101.6 (3)C25—C24—C29—C280.3 (3)
N1—C12—C13—C14108.4 (2)C13—C12—N1—C168.4 (2)
N1—C12—C13—C1667.8 (2)C13—C12—N1—C21166.40 (16)
C16—C13—C14—N40.6 (2)C2—C1—N1—C12147.38 (16)
C12—C13—C14—N4177.40 (18)C2—C1—N1—C2187.41 (19)
N4—C15—C16—C17179.86 (17)C22—C21—N1—C1276.6 (2)
C20—C15—C16—C172.1 (3)C22—C21—N1—C1156.94 (17)
N4—C15—C16—C130.5 (2)C1—C2—N2—C3161.54 (17)
C20—C15—C16—C13177.50 (18)C4—C3—N2—C2170.19 (16)
C14—C13—C16—C17179.8 (2)C4—C5—N3—C60.2 (2)
C12—C13—C16—C172.9 (3)C11—C6—N3—C5179.0 (2)
C14—C13—C16—C150.6 (2)C7—C6—N3—C50.9 (2)
C12—C13—C16—C15177.50 (18)C13—C14—N4—C150.3 (2)
C15—C16—C17—C181.7 (3)C20—C15—N4—C14177.6 (2)
C13—C16—C17—C18177.8 (2)C16—C15—N4—C140.2 (2)
C16—C17—C18—C190.0 (3)C22—C23—N5—C240.1 (3)
C17—C18—C19—C201.4 (3)C29—C24—N5—C23178.3 (2)
C18—C19—C20—C151.0 (3)C25—C24—N5—C230.6 (3)
N4—C15—C20—C19178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.92 (2)2.03 (2)2.953 (3)176 (2)
N2—H2···N10.83 (2)2.45 (2)2.889 (2)114 (2)
Symmetry code: (i) x, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N4—H4···N2i0.92 (2)2.03 (2)2.953 (3)176.3 (19)
N2—H2···N10.829 (16)2.45 (2)2.889 (2)114.3 (16)
Symmetry code: (i) x, y, z.
 

Acknowledgements

This work was supported by the Wuhan University of Science and Technology.

References

First citationBruker (2001). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationMunjal, M. & Gupta, R. (2010). Inorg. Chim. Acta, 363, 2734–2742.  Web of Science CSD CrossRef CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals
First citationShimazaki, Y., Yajima, T., Takani, M. & Yamauchi, O. (2009). Coord. Chem. Rev. 253, 479–492.  Web of Science CrossRef CAS
First citationTakani, M., Takeda, T., Yajima, T. & Yamauchi, O. (2006). Inorg. Chem. 45, 5938–5946.  Web of Science CSD CrossRef PubMed CAS
First citationZhu, X., Zhou, S., Wang, S., Wei, Y., Zhang, L., Wang, F., Wang, S. & Feng, Z. (2012). Chem. Commun. 48. 12020–12022.

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds