supplementary materials


lh5654 scheme

Acta Cryst. (2013). E69, m572    [ doi:10.1107/S1600536813026366 ]

Bis(2-meth­oxy­benzyl­ammonium) di­aqua­bis­(di­hydrogen diphosphato-[kappa]2O,O')manganate(II) dihydrate

A. Elboulali, S. Akriche and M. Rzaigui

Abstract top

The asymmetric unit of the title compound, (C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2O, consists of half an MnII complex anion, a 2-meth­oxy­benyl­ammonium cation and a solvent water mol­ecule. The MnII complex anion lies across an inversion center, and has a slightly distorted octa­hedral coordination environment for the MnII ion, formed by two bidentate dihydrogendiphosphate ligands and two water mol­ecules. In the crystal, the components are linked by O-H...O and N-H...O hydrogen bonds, forming layers parallel to (100). An intra­molecular N-H...O hydrogen bond is also observed.

Comment top

As a part of our study of crystal packing in diphosphate materials, a new hybrid compound of mixed organic-metal cations have been synthesized: (C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2O (I).

The asymmetric unit of (I) is made up of a half of mononuclear [Mn(H2P2O7)2(H2O)2]2- moiety, one of organic cation and one water of crystallization. As the MnII ion lies on inversion centre, the complete formula unit is generated by this element of symmetry (Fig. 1).

In the crystal packing, each MnII ion is coordinated by two bidentate diphosphate ligands and two coordinated O1W water molecules to form a slightly distorted MnO6 octahedron. The valence bond calculation (Brown & Altermatt, 1985) gives an effective bond valence of 1.9417 consistent with the cationic charge of +2.

The Mn—O bond distances around the MnII ion are in the range 2.1389 (12)–2.1987 (14) Å which is close to those reported for Mn metal in K2Mn(H2P2O7)2·2(H2O) framework (mean Mn—O = 2.173 Å) (Alaoui Tahiri et al., 2003), and slightly longer compared to those around Co in related structures (Selmi et al., 2006,2009; Ahmed et al., 2006). The P2O7 ligand has a quasi-eclipsed conformation with O—P—P—O torsion angles averaging 19.5 ° and it bridges the MnII ion through O2—P1 and O6—P2 linkages thus producing a bent P2O7 group, with a P1—O4—P2 angle of 134.68 (9)° as observed in other M(II)–organic diphosphate frameworks (Selmi et al., 2006, 2009; Ahmed et al., 2006; Gharbi et al., 2004;1994). On the other hand the main bond lenghts of organic cations, are comparable to those observed in the 4-methoxybenzylammonium cations in the (C8H12NO)2(H2P2O7) structure reported earlier (Elboulali et al., 2013).

The MnO6 octahedra are arranged into anionic layers spreading along a-axis at x = 1/2 (Fig.2) via O—H···O hydrogen bonding interactions involving the hydroxyl groups of [H2P2O7]2- and OW1 water molecules. The remaining uncoordinated O2W water molecules and 2-methoxybenzylammonium cations further link these so as to contribute to their cohesion with O···O and N···O separations ranging from 2.826 (2)to 2.991 (2) Å (Table 1) and build a two-dimensionnal network parallel to (100).

Related literature top

For related structures, see: Alaoui Tahiri et al. (2003); Selmi et al. (2006, 2009); Ahmed et al. (2006); Gharbi et al. (1994); Gharbi & Jouini (2004); Elboulali et al. (2013). For valence-bond calculations, see: Brown & Altermatt (1985).

Experimental top

Crystals of the title compound were synthesized by the reaction of diphosphoric acid H4P2O7 (2 mmol), MnCl2·4H2O (0.2 g; 1 mmol) and 2-methoxybenzylamine (0.138 g; 1 mmol) carried out in an acidic medium. The diphosphoric acid, H4P2O7, was obtained from Na4P2O7 by using an ion-exchange resin (Amberlite IR 120).

Refinement top

All H atoms attached to C, O and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å with Uiso(H) = 1.2Ueq(C) for the aromatic ring and C—H = 0.97 and 0.96 Å and N—H = 0.89 Å respectively for CH2, CH3, NH3 cation groups and O—H = 0.82 Å for the diphosphoric anion with Uiso(H) = 1.5Ueq(C, O or N). The water H atoms were refined using restraints [O—H = 0.85 (1) Å, H···H = 1.44 (2) Å and Uiso(H) = 1.5Ueq(O)].

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are represented as dotted lines [Symmetry code: (i) 1 - x, 1 - y, 1 - z]. Only the symmetry unique cation and solvent water molecule are shown.
[Figure 2] Fig. 2. Crystal packing of (I) viewed along the b-axis. The H-atoms not involved in H-bonding are omitted.
(I) top
Crystal data top
(C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2OF(000) = 782
Mr = 755.29Dx = 1.615 Mg m3
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 13.971 (2) Åθ = 9–11°
b = 12.150 (3) ŵ = 0.37 mm1
c = 9.169 (2) ÅT = 293 K
β = 93.80 (4)°Prism, colorless
V = 1553.0 (6) Å30.3 × 0.2 × 0.1 mm
Z = 2
Data collection top
Enraf–Nonius CAD-4
diffractometer
4417 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.028
Graphite monochromatorθmax = 28.0°, θmin = 2.2°
non–profiled ω scansh = 223
Absorption correction: multi-scan
(Blessing, 1995)
k = 202
Tmin = 0.920, Tmax = 0.933l = 1515
9935 measured reflections2 standard reflections every 120 min
7513 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 0.98 w = 1/[σ2(Fo2) + (0.051P)2]
where P = (Fo2 + 2Fc2)/3
7513 reflections(Δ/σ)max = 0.001
212 parametersΔρmax = 0.98 e Å3
6 restraintsΔρmin = 0.45 e Å3
Crystal data top
(C8H12NO)2[Mn(H2P2O7)2(H2O)2]·2H2OV = 1553.0 (6) Å3
Mr = 755.29Z = 2
Monoclinic, P21/cAg Kα radiation, λ = 0.56087 Å
a = 13.971 (2) ŵ = 0.37 mm1
b = 12.150 (3) ÅT = 293 K
c = 9.169 (2) Å0.3 × 0.2 × 0.1 mm
β = 93.80 (4)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
4417 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.028
Tmin = 0.920, Tmax = 0.933θmax = 28.0°
9935 measured reflections2 standard reflections every 120 min
7513 independent reflections intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.112Δρmax = 0.98 e Å3
S = 0.98Δρmin = 0.45 e Å3
7513 reflectionsAbsolute structure: ?
212 parametersAbsolute structure parameter: ?
6 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.50000.50000.50000.01975 (7)
P10.40929 (3)0.24580 (3)0.52770 (4)0.01970 (8)
P20.61630 (3)0.25518 (3)0.48651 (4)0.02071 (8)
O10.36950 (13)0.19825 (11)0.38021 (12)0.0416 (4)
H1O10.37050.24590.31700.062*
O20.40268 (9)0.36785 (9)0.53325 (13)0.0254 (2)
O30.36529 (9)0.18355 (9)0.64756 (11)0.0265 (2)
O40.51947 (10)0.20876 (11)0.54427 (18)0.0434 (4)
O50.68873 (10)0.23523 (12)0.61998 (13)0.0372 (3)
H5O50.66890.26480.69250.056*
O60.60365 (9)0.37401 (9)0.45084 (14)0.0281 (2)
O70.64655 (11)0.18277 (10)0.36615 (12)0.0328 (3)
O80.15813 (12)0.37510 (16)0.4909 (2)0.0591 (5)
O1W0.53579 (13)0.49630 (11)0.73711 (14)0.0397 (3)
H1W10.5620 (17)0.5541 (11)0.775 (3)0.060*
H2W10.5603 (18)0.4381 (11)0.776 (3)0.060*
O2W0.24876 (11)0.49273 (11)1.02182 (16)0.0372 (3)
H1W20.2768 (17)0.5511 (12)1.057 (3)0.056*
H2W20.2729 (17)0.4349 (11)1.062 (2)0.056*
N10.27883 (11)0.49595 (12)0.72005 (17)0.0308 (3)
H1N10.27820.48010.81480.046*
H2N10.32740.54120.70590.046*
H3N10.28590.43420.66960.046*
C10.18760 (15)0.54946 (17)0.6701 (3)0.0406 (5)
H1A0.19130.57240.56920.049*
H1B0.17930.61500.72820.049*
C20.10154 (15)0.47695 (17)0.6805 (2)0.0378 (4)
C30.0334 (2)0.4970 (2)0.7795 (3)0.0602 (7)
H30.04290.55330.84770.072*
C40.0495 (2)0.4331 (4)0.7777 (4)0.0810 (11)
H40.09550.44680.84430.097*
C50.0629 (2)0.3510 (3)0.6785 (4)0.0788 (10)
H50.11880.30940.67690.095*
C60.00385 (19)0.3278 (2)0.5809 (4)0.0623 (7)
H60.00610.27050.51440.075*
C70.08660 (15)0.39064 (18)0.5820 (2)0.0423 (5)
C80.1448 (3)0.2977 (3)0.3750 (4)0.0961 (13)
H8A0.13560.22570.41470.144*
H8B0.20040.29740.31880.144*
H8C0.08940.31780.31320.144*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02626 (17)0.01297 (12)0.02024 (13)0.00102 (13)0.00333 (11)0.00008 (12)
P10.02775 (18)0.01485 (17)0.01671 (15)0.00373 (16)0.00300 (13)0.00009 (13)
P20.02652 (19)0.01738 (17)0.01837 (16)0.00336 (16)0.00264 (13)0.00126 (14)
O10.0818 (11)0.0257 (6)0.0167 (5)0.0164 (7)0.0012 (6)0.0003 (5)
O20.0296 (6)0.0157 (5)0.0311 (6)0.0023 (4)0.0044 (5)0.0019 (4)
O30.0400 (7)0.0221 (5)0.0178 (5)0.0083 (5)0.0045 (5)0.0020 (4)
O40.0319 (7)0.0262 (6)0.0733 (10)0.0032 (5)0.0135 (7)0.0195 (7)
O50.0430 (7)0.0460 (8)0.0218 (5)0.0175 (6)0.0033 (5)0.0051 (5)
O60.0313 (6)0.0170 (5)0.0370 (6)0.0015 (4)0.0111 (5)0.0024 (4)
O70.0538 (8)0.0244 (6)0.0205 (5)0.0076 (6)0.0038 (5)0.0016 (4)
O80.0425 (9)0.0722 (12)0.0618 (10)0.0020 (9)0.0021 (8)0.0262 (9)
O1W0.0682 (10)0.0235 (6)0.0254 (6)0.0043 (7)0.0122 (6)0.0004 (5)
O2W0.0397 (7)0.0319 (7)0.0395 (7)0.0032 (6)0.0020 (6)0.0002 (6)
N10.0305 (7)0.0275 (7)0.0346 (7)0.0001 (6)0.0043 (6)0.0013 (6)
C10.0389 (11)0.0283 (9)0.0535 (12)0.0026 (8)0.0065 (9)0.0057 (8)
C20.0314 (9)0.0397 (11)0.0417 (10)0.0038 (8)0.0019 (8)0.0058 (8)
C30.0462 (13)0.0774 (19)0.0575 (14)0.0148 (14)0.0077 (11)0.0006 (13)
C40.0421 (15)0.125 (3)0.078 (2)0.0154 (18)0.0190 (14)0.037 (2)
C50.0373 (14)0.093 (2)0.105 (3)0.0157 (15)0.0083 (15)0.049 (2)
C60.0424 (13)0.0519 (15)0.089 (2)0.0130 (11)0.0224 (13)0.0182 (14)
C70.0328 (10)0.0407 (11)0.0515 (12)0.0007 (9)0.0107 (9)0.0063 (9)
C80.079 (2)0.114 (3)0.092 (2)0.026 (2)0.0193 (19)0.062 (2)
Geometric parameters (Å, º) top
Mn1—O2i2.1389 (12)O2W—H2W20.854 (9)
Mn1—O22.1389 (12)N1—C11.476 (3)
Mn1—O6i2.1749 (12)N1—H1N10.8900
Mn1—O62.1749 (12)N1—H2N10.8900
Mn1—O1Wi2.1987 (14)N1—H3N10.8900
Mn1—O1W2.1987 (14)C1—C21.499 (3)
P1—O21.4868 (12)C1—H1A0.9700
P1—O31.4991 (12)C1—H1B0.9700
P1—O11.5400 (13)C2—C31.380 (4)
P1—O41.6013 (15)C2—C71.390 (3)
P2—O61.4883 (13)C3—C41.393 (5)
P2—O71.4941 (13)C3—H30.9300
P2—O51.5545 (14)C4—C51.355 (5)
P2—O41.5886 (15)C4—H40.9300
O1—H1O10.8200C5—C61.363 (5)
O5—H5O50.8200C5—H50.9300
O8—C71.357 (3)C6—C71.385 (3)
O8—C81.422 (3)C6—H60.9300
O1W—H1W10.855 (9)C8—H8A0.9600
O1W—H2W10.852 (9)C8—H8B0.9600
O2W—H1W20.861 (9)C8—H8C0.9600
O2i—Mn1—O2180.0C1—N1—H1N1109.5
O2i—Mn1—O6i86.53 (5)C1—N1—H2N1109.5
O2—Mn1—O6i93.47 (5)H1N1—N1—H2N1109.5
O2i—Mn1—O693.47 (5)C1—N1—H3N1109.5
O2—Mn1—O686.53 (5)H1N1—N1—H3N1109.5
O6i—Mn1—O6180.00 (7)H2N1—N1—H3N1109.5
O2i—Mn1—O1Wi87.07 (6)N1—C1—C2113.65 (16)
O2—Mn1—O1Wi92.93 (6)N1—C1—H1A108.8
O6i—Mn1—O1Wi94.56 (6)C2—C1—H1A108.8
O6—Mn1—O1Wi85.44 (6)N1—C1—H1B108.8
O2i—Mn1—O1W92.93 (6)C2—C1—H1B108.8
O2—Mn1—O1W87.07 (6)H1A—C1—H1B107.7
O6i—Mn1—O1W85.44 (6)C3—C2—C7118.7 (2)
O6—Mn1—O1W94.56 (6)C3—C2—C1122.0 (2)
O1Wi—Mn1—O1W180.0C7—C2—C1119.3 (2)
O2—P1—O3116.66 (7)C2—C3—C4120.2 (3)
O2—P1—O1112.62 (7)C2—C3—H3119.9
O3—P1—O1108.22 (7)C4—C3—H3119.9
O2—P1—O4109.79 (7)C5—C4—C3119.7 (3)
O3—P1—O4103.12 (8)C5—C4—H4120.1
O1—P1—O4105.47 (10)C3—C4—H4120.1
O6—P2—O7116.38 (7)C4—C5—C6121.5 (3)
O6—P2—O5112.70 (8)C4—C5—H5119.2
O7—P2—O5106.76 (7)C6—C5—H5119.2
O6—P2—O4109.04 (7)C5—C6—C7119.2 (3)
O7—P2—O4109.02 (9)C5—C6—H6120.4
O5—P2—O4101.92 (9)C7—C6—H6120.4
P1—O1—H1O1109.5O8—C7—C6124.5 (2)
P1—O2—Mn1134.61 (8)O8—C7—C2114.79 (19)
P2—O4—P1134.68 (9)C6—C7—C2120.7 (3)
P2—O5—H5O5109.5O8—C8—H8A109.5
P2—O6—Mn1135.10 (8)O8—C8—H8B109.5
C7—O8—C8119.1 (2)H8A—C8—H8B109.5
Mn1—O1W—H1W1116.6 (16)O8—C8—H8C109.5
Mn1—O1W—H2W1119.0 (16)H8A—C8—H8C109.5
H1W1—O1W—H2W1111.4 (19)H8B—C8—H8C109.5
H1W2—O2W—H2W2111 (2)
O3—P1—O2—Mn1136.77 (10)O1Wi—Mn1—O6—P2116.08 (12)
O1—P1—O2—Mn197.20 (12)O1W—Mn1—O6—P263.92 (12)
O4—P1—O2—Mn119.99 (13)N1—C1—C2—C3111.1 (2)
O6i—Mn1—O2—P1178.37 (10)N1—C1—C2—C772.7 (2)
O6—Mn1—O2—P11.63 (10)C7—C2—C3—C41.5 (4)
O1Wi—Mn1—O2—P186.87 (11)C1—C2—C3—C4174.7 (2)
O1W—Mn1—O2—P193.13 (11)C2—C3—C4—C50.2 (4)
O6—P2—O4—P122.20 (18)C3—C4—C5—C61.0 (5)
O7—P2—O4—P1105.83 (15)C4—C5—C6—C70.8 (4)
O5—P2—O4—P1141.55 (15)C8—O8—C7—C67.3 (4)
O2—P1—O4—P238.38 (18)C8—O8—C7—C2172.6 (2)
O3—P1—O4—P2163.37 (14)C5—C6—C7—O8179.7 (2)
O1—P1—O4—P283.20 (16)C5—C6—C7—C20.5 (4)
O7—P2—O6—Mn1139.06 (11)C3—C2—C7—O8178.5 (2)
O5—P2—O6—Mn197.14 (12)C1—C2—C7—O85.2 (3)
O4—P2—O6—Mn115.27 (14)C3—C2—C7—C61.6 (3)
O2i—Mn1—O6—P2157.14 (11)C1—C2—C7—C6174.7 (2)
O2—Mn1—O6—P222.86 (11)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3ii0.821.772.5689 (17)164
O5—H5O5···O7iii0.821.762.5711 (18)169
O1W—H1W1···O3iv0.86 (1)1.98 (1)2.8304 (19)174 (3)
O1W—H2W1···O7iii0.85 (1)2.04 (1)2.879 (2)167 (2)
O2W—H1W2···O7iv0.86 (1)2.03 (1)2.886 (2)175 (3)
O2W—H2W2···O3iii0.85 (1)2.05 (1)2.8842 (19)164 (2)
N1—H1N1···O2W0.891.972.826 (2)160
N1—H2N1···O6i0.892.062.826 (2)144
N1—H3N1···O80.892.452.991 (2)120
N1—H3N1···O20.892.272.957 (2)134
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1/2, z1/2; (iii) x, y+1/2, z+1/2; (iv) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1O1···O3i0.821.772.5689 (17)163.7
O5—H5O5···O7ii0.821.762.5711 (18)168.8
O1W—H1W1···O3iii0.855 (9)1.979 (10)2.8304 (19)174 (3)
O1W—H2W1···O7ii0.852 (9)2.041 (11)2.879 (2)167 (2)
O2W—H1W2···O7iii0.861 (9)2.027 (10)2.886 (2)175 (3)
O2W—H2W2···O3ii0.854 (9)2.053 (12)2.8842 (19)164 (2)
N1—H1N1···O2W0.891.972.826 (2)159.6
N1—H2N1···O6iv0.892.062.826 (2)143.9
N1—H3N1···O80.892.452.991 (2)119.6
N1—H3N1···O20.892.272.957 (2)134.0
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2; (iii) x+1, y+1/2, z+3/2; (iv) x+1, y+1, z+1.
Acknowledgements top

No acknowledgements

references
References top

Ahmed, S., Samah, A. & Mohamed, R. (2006). Acta Cryst. E62, m1796–m1798.

Alaoui Tahiri, A., Ouarsal, R., Lachkar, M., Zavalij, P. Y. & El Bali, B. (2003). Acta Cryst. E59, i68–i69.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

Elboulali, A., Akriche, S., Al-Deyab, S. S. & Rzaigui, M. (2013). Acta Cryst. E69, o213–o214.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gharbi, A. & Jouini, A. (2004). J. Chem. Crystallogr. 34, 11–13.

Gharbi, A., Jouini, A., Averbuch-Pouchot, M. T. & Durif, A. (1994). J. Solid State Chem. 111, 330–337.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

Selmi, A., Akriche, S. & Rzaigui, M. (2006). Anal. Sci. 22, x135–x136.

Selmi, A., Akriche, S. & Rzaigui, M. (2009). Acta Cryst. E65, m1487.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.