[Journal logo]

Volume 69 
Part 11 
Pages o1680-o1681  
November 2013  

Received 27 August 2013
Accepted 11 October 2013
Online 23 October 2013

Key indicators
Single-crystal X-ray study
T = 100 K
Mean [sigma](C-C) = 0.002 Å
R = 0.032
wR = 0.078
Data-to-parameter ratio = 11.9
Details
Open access

3-(1,3-Di­phenyl­propan-2-yl)-4-methyl-6-phenyl­isoxazolo[3,4-d]pyridazin-7(6H)-one

aBruker AXS Inc., 5465 East Cheryl Parkway, Madison, WI 53711, USA, and bThe University of Montana-Missoula, The Department of Biomedical & Pharmaceutical Sciences, Missoula, MT 59812-1552, USA
Correspondence e-mail: nicholas.natale@umontana.edu

In the title compound, C27H23N3O2, the geminal benzyl groups branching out from the methine adjacent to the isoxazole group are both syn-oriented to the methyl group of the pyridazinone moiety, as reflected by C-C distances of 3.812 (2) and 4.369 (2) Å between the methyl carbon and the nearest ring carbon of each benzyl group. This kind of conformation is retained in CDCl3 solution, as evidenced by distinct phenyl-shielding effects on the 1H NMR signals of the methyl H atoms. The isoxazolo[3,4-d]pyridazin ring system is virtually planar (r.m.s. deviation from planarity = 0.031 Å), but the N-bonded phenyl group is inclined to the former by an ring-ring angle of 55.05 (3)°. In the crystal, the T-shaped mol­ecules are arranged in an inter­locked fashion, forming rod-like assemblies along [10-1]. The mol­ecules are held together by unremarkable weak C-H...N, C-H...O and C-H...[pi] inter­actions (C-O,N,C > 3.4 A), while significant [pi]-[pi]-stacking inter­actions are absent.

Related literature

For chemistry of isoxazolo[3,4-d]pyridazinone preparation, see: Renzi & Dal Piaz (1965[Renzi, G. & Dal Piaz, V. (1965). Gazz. Chim. Ital. 95, 1478-1491.]). For deprotonation with sodium alkoxides, see: Dal Piaz et al. (1975[Dal Piaz, V., Pinzauti, S. & Lacrimini, P. (1975). J. Heterocycl. Chem. 13, 409-410.]); Chimichi et al. (1986[Chimichi, S., Ciciani, G., Dal Piaz, V., De Sio, F., Sarti-Fantoni, P. & Torroba, T. (1986). Heterocycles, 24, 3467-3471.]). For the rearrangement of the isoxazolo[3,4-d]pyridazinone ring system to pyrazole, see: Dal Piaz et al. (1985[Dal Piaz, V., Ciciani, G. & Chimichi, S. (1985). Heterocycles, 23, 365-369.]). For isoxazole lateral metalation, see: Natale & Niou (1984[Natale, N. R. & Niou, C.-S. (1984). Tetrahedron Lett. 25, 3943-3946.]); Natale et al. (1985[Natale, N. R., McKenna, J. I., Niou, C.-S., Borth, M. & Hope, H. (1985). J. Org. Chem. 50, 5660-5666.]); Niou & Natale (1986[Niou, C.-S. & Natale, N. R. (1986). Heterocycles, 24, 401-412.]); Schlicksupp & Natale (1987[Schlicksupp, L. & Natale, N. R. (1987). J. Heterocycl. Chem. 24, 1345-1348.]). For recent applications of lateral metalation and electrophilic quenching of isoxazoles to targets of biological inter­est, see: Nakamura et al. (2010[Nakamura, M., Kurihara, H., Suzuki, G., Mitsuya, M., Ohkubo, M. & Ohta, H. (2010). Bioorg. Med. Chem. Lett. 20, 726-729.]); Hulubei et al. (2012[Hulubei, V., Meikrantz, S. B., Quincy, D. A., Houle, T., McKenna, J. I., Rogers, M. E., Steiger, S. A. & Natale, N. R. (2012). Bioorg. Med. Chem. 20, 6613-6620.]). For a review of the lateral metalation and electrophilic quenching of isoxazoles, see: Natale & Mirzaei (1993[Natale, N. R. & Mirzaei, Y. R. (1993). Org. Prep. Proc. Int. 25, 515-556.]).

[Scheme 1]

Experimental

Crystal data
  • C27H23N3O2

  • Mr = 421.48

  • Triclinic, [P \overline 1]

  • a = 7.5163 (4) Å

  • b = 9.6774 (5) Å

  • c = 15.9053 (8) Å

  • [alpha] = 86.798 (1)°

  • [beta] = 83.512 (1)°

  • [gamma] = 69.385 (1)°

  • V = 1075.75 (10) Å3

  • Z = 2

  • Cu K[alpha] radiation

  • [mu] = 0.66 mm-1

  • T = 100 K

  • 0.40 × 0.22 × 0.19 mm

Data collection
  • Bruker D8 Venture PHOTON 100 CMOS diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.80, Tmax = 0.89

  • 12012 measured reflections

  • 3714 independent reflections

  • 3597 reflections with I > 2[sigma](I)

  • Rint = 0.017

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.078

  • S = 1.03

  • 3714 reflections

  • 313 parameters

  • 86 restraints

  • Only H-atom displacement parameters refined

  • [Delta][rho]max = 0.22 e Å-3

  • [Delta][rho]min = -0.14 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C26-H26...O1i 0.95 2.61 3.4159 (13) 143
C24-H24...N1ii 0.95 2.73 3.5407 (15) 143
C11-H11...C18iii 0.95 2.78 3.6182 (15) 148
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) -x, -y+1, -z+2.

Data collection: SMART (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2012[Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2060 ).


Acknowledgements

NRN, JM, CG and CK thank the National Institutes of Health for grants NINDS P20RR015583 Center for Structural and Functional Neuroscience (CSFN) and P20 RR017670 Center for Environmental Health Sciences (CEHS), We also thank NINDS P30 (NN and JM), and the University of Montana Grant Program (NN).

References

Bruker (2012). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chimichi, S., Ciciani, G., Dal Piaz, V., De Sio, F., Sarti-Fantoni, P. & Torroba, T. (1986). Heterocycles, 24, 3467-3471.  [CrossRef] [ChemPort]
Dal Piaz, V., Ciciani, G. & Chimichi, S. (1985). Heterocycles, 23, 365-369.  [CrossRef] [ChemPort]
Dal Piaz, V., Pinzauti, S. & Lacrimini, P. (1975). J. Heterocycl. Chem. 13, 409-410.  [CrossRef]
Hulubei, V., Meikrantz, S. B., Quincy, D. A., Houle, T., McKenna, J. I., Rogers, M. E., Steiger, S. A. & Natale, N. R. (2012). Bioorg. Med. Chem. 20, 6613-6620.  [CrossRef] [ChemPort] [PubMed]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Nakamura, M., Kurihara, H., Suzuki, G., Mitsuya, M., Ohkubo, M. & Ohta, H. (2010). Bioorg. Med. Chem. Lett. 20, 726-729.  [CrossRef] [ChemPort] [PubMed]
Natale, N. R., McKenna, J. I., Niou, C.-S., Borth, M. & Hope, H. (1985). J. Org. Chem. 50, 5660-5666.  [CSD] [CrossRef] [ChemPort]
Natale, N. R. & Mirzaei, Y. R. (1993). Org. Prep. Proc. Int. 25, 515-556.  [CrossRef] [ChemPort]
Natale, N. R. & Niou, C.-S. (1984). Tetrahedron Lett. 25, 3943-3946.  [CrossRef] [ChemPort] [Web of Science]
Niou, C.-S. & Natale, N. R. (1986). Heterocycles, 24, 401-412.  [ChemPort]
Renzi, G. & Dal Piaz, V. (1965). Gazz. Chim. Ital. 95, 1478-1491.  [ChemPort]
Schlicksupp, L. & Natale, N. R. (1987). J. Heterocycl. Chem. 24, 1345-1348.  [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1680-o1681   [ doi:10.1107/S160053681302802X ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.