supplementary materials


rn2119 scheme

Acta Cryst. (2013). E69, o1651-o1652    [ doi:10.1107/S1600536813027815 ]

(E)-2-[2-(3-Nitro­phen­yl)ethen­yl]quinolin-8-ol

M. Schulze, W. Seichter and E. Weber

Abstract top

In the title compound, C17H12N2O3, the mean planes of the benzene ring and the quinoline moiety are inclined to one another by 11.0 (1)°. The nitro substituent is twisted at an angle of 7.9 (2)° with respect to the attached benzene ring. Intra­molecular O-H...N and C-H...N hydrogen bonds occur. The crystal is constructed of mol­ecular stacks without involvement of [pi]-stacking inter­actions, but showing inter­stack association via O-H...O and C-H...O hydrogen bonding. Thus, the supramolecular architecture of the crystal results from stacked molecules stabilized by hydrogen bonding between the stacks.

Comment top

Quinolin-8-ol (8-hydroxyquinoline) is a well known complexant for a variety of transition metal ions forming quantitatively precipitable internal complexes thus playing an important role in analytical chemistry (Albrecht et al., 2008). Derivatives of quinolin-8-ol have also been used as an active component in the design of alkali and alkaline earth metal ion complexing ligands (Vögtle & Weber, 1979; Weber & Vögtle, 1975). Moreover, quinolin-8-ol shows strong fungicidal and antiseptic effects (Desvignes & Leguen, 1963) and derivatives of which are drugs for the successful treatment of different diseases (Cacciatore et al., 2013; McMaster & Bruner, 1935). On the other hand, stilbene and its derivatives are starting materials for the preparation of various dyes, optical brighteners, liquid crystalline compounds and synthetic estrogens (Navadiya et al., 2008; Ravikrishnan et al., 2012; Waibel et al., 2009; Zhu et al., 2013). They are also of interest due to their particular stereochemistry including photochemical rearrangement and reactions (Butkovic et al., 2011; Ho et al., 2000). The structure of the title compound comprises both these specific construction elements, quinolin-8-ol and stilbene. In the structure of the compound (Fig. 1), the dihedral angle formed by the least-squares planes of the phenyl ring and the quinoline moiety is 11.0 (1)°, while the nitro substituent is twisted at an angle of 7.9 (2)° with reference to the phenyl ring. The bond lengths within the quinoline fragment are in the range of expected values and agree well with those found in the crystal structures of related compounds (Yoneda et al., 2002; Zeng et al., 2007). The torsion angle along the atomic sequence N(1)—C(8)—C(10)—C(11) is 6.3 (4)°. Within the quinolin-8-ol part, the hydroxyl hydrogen is connected to the nitrogen by a strained hydrogen bond [O(1)—H(1)···N(1) 2.19Å, 117°] which is typical for this kind of compounds (Fazaeli et al., 2008; Malecki et al., 2010; Zeng et al., 2007). Moreover, there is a hydrogen bond type contact between H(11) and N(1) [d(H···N) 2.53Å]. The crystal (Fig. 2) is constructed of molecular stacks extending along the b-axis. The closest centroid-centroid distance between the phenol and pyridine ring of consecutive molecules is 4.02Å thus indicating, however, no π-stacking interaction between those groups. Moreover, the ethenylene fragment of a given molecule is sandwiched in a distance of ca. 3.45Å between the electron deficient aromatic rings of adjacent molecules. Interstack association is accomplished by a close network of O—H···O [d(O···O) 3.180 (5)Å] and C—H···O hydrogen bonds [d(C···O) 3.400 (3)Å] (Desiraju & Steiner, 1999).

Related literature top

For uses of quinoline-8-ol and derivatives as complexants and pharmaceuticals, see: Albrecht et al. (2008); Cacciatore et al. (2013); Desvignes & Leguen (1963); McMaster & Bruner (1935); Vögtle & Weber (1979); Weber & Vögtle (1975). For applications of stilbene and derivatives, see: Butkovic et al. (2011); Ho et al. (2000); Navadiya et al. (2008); Ravikrishnan et al. (2012); Waibel et al. (2009); Zhu et al. (2013). For the preparative method used for the synthesis of the title compound, see: Yuan et al. (2012). For non-classical hydrogen bonds, see: Desiraju & Steiner (1999). For related structures, including intramolecular hydrogen bonding of quinoline-8-ol, see: Fazaeli et al. (2008); Malecki et al. (2010); Yoneda et al. (2002); Zeng et al. (2007).

Experimental top

The title compound was synthesized via Knoevenagel type condensation (Yuan et al., 2012) using 8-hydroxyquinaldine (320 mg, 2.0 mmol) and 4-nitrobenzaldehyde (1.21 g, 8.0 mmol) in acetic anhydride (100 ml). The mixture was stirred for 30 h under reflux. After removal of the solvent, the residue was dissolved in 100 ml of pyridine/water (v/v = 4:1) and heated at 100° for 1 h. Evaporation of the solvent under vacuum and purification of the crude product by recrystallization from ethanol yielded 230 mg (40%) of yellow crystals determined as the E configurated compound by 1H NMR analysis (ethenylene protons); m. p. = 449 K. IR (KBr) 3410, 3081, 1526, 1348, 1238, 1196, 829, 735, 593. 1H NMR (500 MHz, CDCl3) 7.20 (d, 3JHH = 7.5 Hz, 1 H), 7.33 (d, 3JHH = 8.2 Hz, 1 H), 7.51 - 7.39 (m, 2 H), 7.59 (t, 3JHH = 7.9 Hz, 1 H), 7.65 (d, 3JHH = 8.5 Hz, 1 H), 7.77 (d, 3JHH = 16.1 Hz, 1 H), 7.92 (d, 3JHH = 7.7 Hz, 1 H), 8.17 (3JHH = 8.0 Hz, 1 H), 8.19 (3JHH = 4.7 Hz, 1 H), 8.49 (s, 1 H). 13C NMR (126 MHz, CDCl3) 110.4, 117.7, 120.61, 121.6, 123.04, 127.8, 127.9, 129.8, 131.0, 131.5, 132.9, 136.8, 138.1, 138.3, 148.8, 152.2, 152.5. MS (ESI) m/z: found 293.0 [M+H]+; calc. for C17H12N2O3 292.08. The melting point (uncorrected) was measured on a hot stage microscope (Büchi 510). The IR spectrum was recorded on a Perkin Elmer FT–IR 1600 spectrometer, 1H and 13C NMR spectra were measured on a Bruker Avance AV-500 spectrometer using (CH3)4Si as internal standard. The ESI mass spectrum was obtained using a ThermoFisher Scientific Orbitrap XL spectrometer. Crystals of the title compound suitable for X-ray structural analysis were taken from the crystallized product.

Refinement top

H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) and O—H = 0.82 Å and Uiso(H) = 1.5 Ueq(O).

Computing details top

Data collection: SMART (Bruker, 2007); cell refinement: SAINT-NT (Bruker, 2007); data reduction: SAINT-NT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Perspective view of the title compound including atom labeling and ring specification. Thermal ellipsoids for the non-hydrogen atoms are drawn at the 50% probability level. Broken lines represent hydrogen bonds.
[Figure 2] Fig. 2. Packing structure of the title compound showing hydrogen bond interactions as broken lines.
(E)-2-[2-(3-Nitrophenyl)ethenyl]quinolin-8-ol top
Crystal data top
C17H12N2O3F(000) = 608
Mr = 292.29Dx = 1.377 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.3346 (7) ÅCell parameters from 6524 reflections
b = 4.7167 (1) Åθ = 2.6–24.8°
c = 15.5674 (6) ŵ = 0.10 mm1
β = 109.255 (2)°T = 298 K
V = 1409.58 (8) Å3Plate, colourless
Z = 40.54 × 0.24 × 0.06 mm
Data collection top
Bruker X8 APEXII CCD detector
diffractometer
2655 independent reflections
Radiation source: fine-focus sealed tube1768 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.028
phi and ω scansθmax = 25.6°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
h = 2424
Tmin = 0.950, Tmax = 0.994k = 45
22418 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.226H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1192P)2 + 0.8405P]
where P = (Fo2 + 2Fc2)/3
2655 reflections(Δ/σ)max < 0.001
200 parametersΔρmax = 0.42 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C17H12N2O3V = 1409.58 (8) Å3
Mr = 292.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.3346 (7) ŵ = 0.10 mm1
b = 4.7167 (1) ÅT = 298 K
c = 15.5674 (6) Å0.54 × 0.24 × 0.06 mm
β = 109.255 (2)°
Data collection top
Bruker X8 APEXII CCD detector
diffractometer
2655 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
1768 reflections with I > 2σ(I)
Tmin = 0.950, Tmax = 0.994Rint = 0.028
22418 measured reflectionsθmax = 25.6°
Refinement top
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.226Δρmax = 0.42 e Å3
S = 1.03Δρmin = 0.24 e Å3
2655 reflectionsAbsolute structure: ?
200 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.27846 (16)0.0783 (7)0.15082 (15)0.1029 (10)
H10.25820.18610.17500.154*
O20.14581 (19)1.0322 (8)0.62596 (19)0.1228 (12)
O30.0587 (2)1.2936 (9)0.5668 (2)0.1474 (16)
N20.10391 (17)1.1402 (7)0.5616 (2)0.0830 (9)
C10.33187 (19)0.0492 (8)0.2157 (2)0.0714 (9)
C20.3740 (2)0.2379 (8)0.1950 (3)0.0846 (11)
H20.36650.28120.13420.101*
C30.4278 (2)0.3683 (8)0.2610 (3)0.0865 (11)
H30.45550.49930.24440.104*
C40.44097 (17)0.3063 (7)0.3524 (3)0.0744 (9)
H40.47760.39380.39690.089*
C50.39863 (14)0.1111 (6)0.3769 (2)0.0566 (7)
C60.40520 (16)0.0303 (6)0.4665 (2)0.0616 (8)
H60.44000.11000.51530.074*
C70.36152 (15)0.1611 (6)0.48187 (18)0.0565 (7)
H70.36660.21390.54130.068*
C80.30746 (14)0.2841 (6)0.40839 (16)0.0489 (7)
N10.29937 (12)0.2128 (5)0.32357 (14)0.0517 (6)
C90.34298 (14)0.0229 (6)0.30808 (17)0.0517 (7)
C100.26019 (14)0.4869 (6)0.42662 (17)0.0501 (7)
H100.26410.51910.48700.060*
C110.21158 (14)0.6305 (6)0.36290 (17)0.0519 (7)
H110.20870.59660.30290.062*
C120.16274 (13)0.8338 (6)0.37686 (17)0.0488 (6)
C130.15702 (14)0.8923 (6)0.46277 (17)0.0547 (7)
H130.18580.80070.51440.066*
C140.10879 (15)1.0851 (7)0.4697 (2)0.0602 (7)
C150.06455 (16)1.2257 (7)0.3969 (2)0.0671 (8)
H150.03171.35320.40360.081*
C160.07075 (16)1.1703 (7)0.3126 (2)0.0664 (8)
H160.04211.26530.26170.080*
C170.11795 (15)0.9795 (6)0.30281 (18)0.0577 (7)
H170.12040.94550.24510.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.130 (2)0.125 (2)0.0489 (13)0.0300 (19)0.0224 (14)0.0120 (14)
O20.145 (3)0.165 (3)0.0645 (16)0.054 (2)0.0430 (18)0.0067 (18)
O30.154 (3)0.200 (4)0.101 (2)0.091 (3)0.058 (2)0.015 (2)
N20.088 (2)0.100 (2)0.0637 (18)0.0185 (19)0.0287 (16)0.0100 (17)
C10.086 (2)0.076 (2)0.0586 (18)0.0004 (18)0.0330 (17)0.0096 (16)
C20.109 (3)0.080 (2)0.080 (2)0.000 (2)0.051 (2)0.0205 (19)
C30.094 (3)0.061 (2)0.128 (3)0.0008 (19)0.068 (3)0.019 (2)
C40.0660 (19)0.0581 (18)0.105 (3)0.0024 (15)0.0357 (18)0.0008 (18)
C50.0559 (15)0.0470 (15)0.0735 (19)0.0086 (13)0.0305 (14)0.0034 (13)
C60.0623 (17)0.0632 (17)0.0550 (16)0.0050 (15)0.0138 (14)0.0103 (14)
C70.0643 (17)0.0605 (16)0.0432 (14)0.0020 (14)0.0157 (12)0.0030 (13)
C80.0577 (15)0.0509 (14)0.0379 (13)0.0130 (12)0.0155 (11)0.0006 (11)
N10.0581 (13)0.0520 (12)0.0461 (12)0.0026 (11)0.0187 (10)0.0005 (10)
C90.0590 (16)0.0519 (15)0.0479 (14)0.0108 (13)0.0226 (13)0.0018 (12)
C100.0565 (15)0.0559 (15)0.0389 (13)0.0047 (12)0.0170 (12)0.0016 (11)
C110.0623 (15)0.0545 (15)0.0370 (12)0.0124 (13)0.0139 (12)0.0015 (12)
C120.0520 (14)0.0475 (14)0.0474 (14)0.0085 (12)0.0174 (11)0.0020 (11)
C130.0598 (16)0.0580 (16)0.0425 (14)0.0071 (13)0.0117 (12)0.0031 (12)
C140.0607 (16)0.0646 (17)0.0587 (17)0.0003 (14)0.0242 (14)0.0087 (14)
C150.0585 (17)0.0667 (19)0.071 (2)0.0029 (15)0.0138 (15)0.0071 (16)
C160.0622 (17)0.0694 (19)0.0592 (18)0.0031 (16)0.0085 (14)0.0013 (15)
C170.0622 (16)0.0618 (17)0.0430 (14)0.0091 (14)0.0094 (13)0.0013 (13)
Geometric parameters (Å, º) top
O1—C11.356 (4)C7—H70.9300
O1—H10.8200C8—N11.319 (3)
O2—N21.195 (4)C8—C101.449 (4)
O3—N21.194 (4)N1—C91.337 (3)
N2—C141.488 (4)C10—C111.332 (4)
C1—C21.346 (5)C10—H100.9300
C1—C91.421 (4)C11—C121.447 (4)
C2—C31.375 (6)C11—H110.9300
C2—H20.9300C12—C171.392 (4)
C3—C41.390 (5)C12—C131.408 (4)
C3—H30.9300C13—C141.368 (4)
C4—C51.396 (4)C13—H130.9300
C4—H40.9300C14—C151.365 (4)
C5—C61.410 (4)C15—C161.384 (4)
C5—C91.424 (4)C15—H150.9300
C6—C71.342 (4)C16—C171.361 (4)
C6—H60.9300C16—H160.9300
C7—C81.423 (4)C17—H170.9300
C1—O1—H1109.5C8—N1—C9118.7 (2)
O3—N2—O2123.6 (3)N1—C9—C1116.7 (3)
O3—N2—C14117.9 (3)N1—C9—C5124.8 (2)
O2—N2—C14118.5 (3)C1—C9—C5118.5 (3)
C2—C1—O1122.1 (3)C11—C10—C8124.6 (2)
C2—C1—C9120.0 (3)C11—C10—H10117.7
O1—C1—C9118.0 (3)C8—C10—H10117.7
C1—C2—C3121.9 (3)C10—C11—C12127.1 (2)
C1—C2—H2119.1C10—C11—H11116.5
C3—C2—H2119.1C12—C11—H11116.5
C2—C3—C4120.6 (3)C17—C12—C13117.0 (3)
C2—C3—H3119.7C17—C12—C11119.8 (2)
C4—C3—H3119.7C13—C12—C11123.3 (2)
C3—C4—C5119.3 (3)C14—C13—C12119.5 (3)
C3—C4—H4120.3C14—C13—H13120.3
C5—C4—H4120.3C12—C13—H13120.3
C4—C5—C6125.6 (3)C15—C14—C13123.4 (3)
C4—C5—C9119.7 (3)C15—C14—N2118.6 (3)
C6—C5—C9114.6 (3)C13—C14—N2118.0 (3)
C7—C6—C5120.4 (3)C14—C15—C16117.0 (3)
C7—C6—H6119.8C14—C15—H15121.5
C5—C6—H6119.8C16—C15—H15121.5
C6—C7—C8120.8 (3)C17—C16—C15121.3 (3)
C6—C7—H7119.6C17—C16—H16119.3
C8—C7—H7119.6C15—C16—H16119.3
N1—C8—C7120.6 (3)C16—C17—C12121.8 (3)
N1—C8—C10119.5 (2)C16—C17—H17119.1
C7—C8—C10119.9 (2)C12—C17—H17119.1
O1—C1—C2—C3179.5 (4)C4—C5—C9—C10.5 (4)
C9—C1—C2—C30.8 (6)C6—C5—C9—C1179.1 (3)
C1—C2—C3—C40.7 (6)N1—C8—C10—C116.3 (4)
C2—C3—C4—C50.5 (5)C7—C8—C10—C11174.4 (3)
C3—C4—C5—C6179.2 (3)C8—C10—C11—C12179.6 (2)
C3—C4—C5—C90.4 (4)C10—C11—C12—C17175.9 (3)
C4—C5—C6—C7179.7 (3)C10—C11—C12—C134.9 (4)
C9—C5—C6—C70.7 (4)C17—C12—C13—C140.1 (4)
C5—C6—C7—C80.6 (4)C11—C12—C13—C14179.2 (2)
C6—C7—C8—N10.2 (4)C12—C13—C14—C150.5 (4)
C6—C7—C8—C10179.0 (2)C12—C13—C14—N2179.6 (3)
C7—C8—N1—C90.0 (4)O3—N2—C14—C154.2 (5)
C10—C8—N1—C9179.2 (2)O2—N2—C14—C15174.8 (4)
C8—N1—C9—C1179.4 (2)O3—N2—C14—C13175.0 (4)
C8—N1—C9—C50.1 (4)O2—N2—C14—C136.0 (5)
C2—C1—C9—N1179.6 (3)C13—C14—C15—C161.2 (5)
O1—C1—C9—N10.0 (4)N2—C14—C15—C16179.7 (3)
C2—C1—C9—C50.7 (5)C14—C15—C16—C171.3 (5)
O1—C1—C9—C5179.6 (3)C15—C16—C17—C120.8 (5)
C4—C5—C9—N1179.9 (3)C13—C12—C17—C160.1 (4)
C6—C5—C9—N10.5 (4)C11—C12—C17—C16179.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.192.657 (3)117
O1—H1···O2i0.822.533.180 (5)137
C10—H10···O1ii0.932.513.400 (3)160
C11—H11···N10.932.532.857 (4)101
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.822.192.657 (3)116.5
O1—H1···O2i0.822.533.180 (5)136.6
C10—H10···O1ii0.932.513.400 (3)160.0
C11—H11···N10.932.532.857 (4)101.2
Symmetry codes: (i) x, y+3/2, z1/2; (ii) x, y+1/2, z+1/2.
references
References top

Albrecht, M., Fiege, M. & Osetska, O. (2008). Coord. Chem. Rev. 252, 812–824.

Bruker (2007). SAINT-NT, SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Butkovic, K., Marinic, Z., Molcanov, K., Kojic-Prodic, B. & Sindler-Kulyk, M. (2011). Beilstein J. Org. Chem. 7, 1663–1670.

Cacciatore, I., Fornasari, E., Baldassarre, L., Cornacchia, C., Fulle, S., Di Filippo, E. S., Pietrangelo, T. & Pinnen, F. (2013). Pharmaceuticals, 6, 54–69.

Desiraju, G. R. & Steiner, T. (1999). The Weak Hydrogen Bond in Structural Chemistry and Biology, ch. 2. Oxford University Press.

Desvignes, A. & Leguen, P. (1963). Ann. Pharm. Fr. 21, 803–808.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fazaeli, Y., Amini, M. M., Gao, S. & Ng, S. W. (2008). Acta Cryst. E64, o97.

Ho, T.-J., Ho, J.-H. & Wu, J. Y. (2000). J. Am. Chem. Soc. 122, 8575–8576.

Malecki, G., Nycz, J. E., Ryrych, E., Pomikiewski, L., Nowak, M., Kusz, J. & Pikies, J. (2010). J. Mol. Struct. 969, 130–138.

McMaster, L. & Bruner, W. M. (1935). J. Am. Chem. Soc. 57, 1997–1998.

Navadiya, H. D., Undavia, N. K. & Patwa, B. S. (2008). Int. J. Chem. Sci. 6, 2224–2232.

Ravikrishnan, A., Sudhakara, P. & Kannan, P. (2012). J. Mater. Sci. 45, 435–442.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Vögtle, F. & Weber, E. (1979). Angew. Chem. Int. Ed. 18, 753–776.

Waibel, M., De Angelis, M., Stossi, F., Kieser, K. J., Carlson, K. E., Katzenellenbogen, B. S. & Katzenellenbogen, J. A. (2009). Eur. J. Med. Chem. 44, 3412–3424.

Weber, E. & Vögtle, F. (1975). Tetrahedron Lett. pp. 2415–2418.

Yoneda, S., Ohfuchi, S., Hashimoto, A. & Kitamura, C. (2002). Kenkyu Hokuku Himeji Kogyo Daigaku, 54, 60–67.

Yuan, G.-Z., Rong, L.-L., Huo, Y.-P., Nie, X.-L. & Fang, X.-M. (2012). Inorg. Chem. Commun. 23, 90–94.

Zeng, H.-P., Wang, T.-T., Xu, D.-F., Cai, Y.-P. & Chen, D.-F. (2007). J. Appl. Cryst. 40, 471–475.

Zhu, Y.-C., Lu, H.-X., He, D. H. & Yang, Z.-R. (2013). J. Photochem. Photobiol. B, 125, 8–12.