organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-[(4-Methyl­phen­yl)sulfan­yl]butan-2-one

aVinča Institute of Nuclear Sciences, Laboratory of Theoretical Physics and Condensed Matter Physics, PO Box 522, University of Belgrade, 11001 Belgrade, Serbia, bFaculty of Metallurgy and Technology, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro, and cFaculty of Sciences, Department of Chemistry, University of Kragujevac, R. Domanovića 12, 34000 Kragujevac, Serbia
*Correspondence e-mail: zorica@ac.me

(Received 24 September 2013; accepted 30 September 2013; online 9 October 2013)

In the title compound, C11H14OS, all non-H atoms are essentially coplanar, with a mean deviation of 0.023 Å. In the crystal, centrosymmetrically related mol­ecules are weakly connected into dimers by pairs of C—H⋯O inter­actions. The dimers are further linked along the a axis by weak C—H⋯π and C—H⋯S inter­actions.

Related literature

For the physico-chemical properties of organosulfur compounds, see: Page (1999[Page, P. C. B. (1999). Editor. Organosulfur Chemistry, Vols. 1-2. Berlin: Springer.]). For the synthetic procedure, see: Stevanović et al. (2012[Stevanović, D., Pejović, A., Damljanović, I., Vukićević, M., Bogdanović, G. A. & Vukićević, R. D. (2012). Tetrahedron Lett. 53, 6257-6260.]). For the role of sulfur in hydrogen bonding, see: Francuski et al. (2011[Francuski, B. M., Novaković, S. B. & Bogdanović, G. A. (2011). CrystEngComm, 13, 3580-3591.]).

[Scheme 1]

Experimental

Crystal data
  • C11H14OS

  • Mr = 194.28

  • Triclinic, [P \overline 1]

  • a = 7.2703 (11) Å

  • b = 7.3226 (7) Å

  • c = 11.7615 (11) Å

  • α = 88.232 (8)°

  • β = 79.343 (10)°

  • γ = 61.350 (13)°

  • V = 538.80 (13) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 2.33 mm−1

  • T = 293 K

  • 0.50 × 0.26 × 0.14 mm

Data collection
  • Agilent Gemini S diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]) Tmin = 0.444, Tmax = 1.000

  • 3254 measured reflections

  • 2052 independent reflections

  • 1731 reflections with I > 2σ(I)

  • Rint = 0.027

Refinement
  • R[F2 > 2σ(F2)] = 0.055

  • wR(F2) = 0.170

  • S = 1.07

  • 2052 reflections

  • 120 parameters

  • H-atom parameters constrained

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.33 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C4–C9 phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C10—H10c⋯O1i 0.96 2.67 3.579 (4) 158
C3—H3a⋯S1ii 0.97 2.99 3.855 (3) 149
C3—H3b⋯S1iii 0.97 3.02 3.870 (3) 147
C2—H2a⋯Cgii 0.97 2.86 3.628 (4) 137
C2—H2b⋯Cgiv 0.97 2.95 3.678 (4) 133
Symmetry codes: (i) -x+1, -y, -z-1; (ii) -x, -y, -z; (iii) -x+1, -y, -z; (iv) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2013[Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2006[Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and PARST (Nardelli, 1995[Nardelli, M. (1995). J. Appl. Cryst. 28, 659.]).

Supporting information


Comment top

Sulfides containing a carbonyl group are versatile precursors for the synthesis of wide range of biologically interesting compounds (Page, 1999). The main approach to β-thiaketones is the addition of compounds containing an SH group to conjugated carbonyls (the thia-Michael reaction). We recently published a versatile method for electrochemical generation of the catalyst for this addition (Stevanović et al., 2012) and herein we report the structure of 4-(o-tolylthio)butan-2-one.

The molecule of the title compound (Fig. 1) is essentially planar with a mean deviation of all non-H atoms of 0.023 Å. Atoms O1 and C10 exhibit the highest deviation from the mean molecular plane of 0.047 (3) and -0.057 (2) Å, respectively. The crystal packing displays no classical hydrogen bonding. The carbonyl O1 acceptor is engaged only in a weak C10—H10c···O1 interaction (Table 1) which associates the centrosymmetric molecules into dimers (Fig. 2a). Pairs of C—H···π and C—H···S interactions (Table 1) connect the molecules along the a axis (Figure 2b). In the absence of more relevant hydrogen bonding the weak C—H···S interactions can be considered important for the stabilization of the crystal structure (Francuski et al., 2011).

Related literature top

For the physico-chemical properties of organosulfur compounds, see: Page (1999). For the synthetic procedure see: Stevanović et al. (2012). For the role of sulfur in hydrogen bonding see: Francuski et al. (2011).

Experimental top

The title compound was obtained by treating methyl vinyl ketone with the corresponding thiophenol in the presence of an electrochemically generated zirconium catalyst, following the reported procedure (Stevanović et al., 2012).

Refinement top

All H atoms were placed at geometrically calculated positions and included in the refinement in the riding model approximation, with C—H lengths of 0.93 (CH), 0.96 (CH3) and 0.97 (CH2) Å. Uiso of the H atoms was set at 1.5Ueq of the parent C atom for the methyl group and at 1.2Ueq otherwise.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 2012) and Mercury (Macrae et al., 2006); software used to prepare material for publication: WinGX (Farrugia, 2012), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 40% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. Intermolecular interactions in the title compound: (a) C—H···O interactions (dashed lines) connecting centrosymmetrically related molecules into dimers; (b) C—H···π (dotted lines) and C—H···S interactions (dashed lines) connecting the molecules along a axis. H-atoms not involved in hydrogen interactions are omitted.
4-[(4-Methylphenyl)sulfanyl]butan-2-one top
Crystal data top
C11H14OSZ = 2
Mr = 194.28F(000) = 208
Triclinic, P1Dx = 1.198 Mg m3
Hall symbol: -P 1Cu Kα radiation, λ = 1.54180 Å
a = 7.2703 (11) ÅCell parameters from 1309 reflections
b = 7.3226 (7) Åθ = 7.0–72.1°
c = 11.7615 (11) ŵ = 2.33 mm1
α = 88.232 (8)°T = 293 K
β = 79.343 (10)°Prismatic, colourless
γ = 61.350 (13)°0.50 × 0.26 × 0.14 mm
V = 538.80 (13) Å3
Data collection top
Agilent Gemini S
diffractometer
2052 independent reflections
Radiation source: Enhance (Cu) X-ray Source1731 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 16.3280 pixels mm-1θmax = 72.9°, θmin = 3.8°
ω scansh = 88
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 95
Tmin = 0.444, Tmax = 1.000l = 1414
3254 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.170H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.1046P)2 + 0.083P]
where P = (Fo2 + 2Fc2)/3
2052 reflections(Δ/σ)max < 0.001
120 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
C11H14OSγ = 61.350 (13)°
Mr = 194.28V = 538.80 (13) Å3
Triclinic, P1Z = 2
a = 7.2703 (11) ÅCu Kα radiation
b = 7.3226 (7) ŵ = 2.33 mm1
c = 11.7615 (11) ÅT = 293 K
α = 88.232 (8)°0.50 × 0.26 × 0.14 mm
β = 79.343 (10)°
Data collection top
Agilent Gemini S
diffractometer
2052 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
1731 reflections with I > 2σ(I)
Tmin = 0.444, Tmax = 1.000Rint = 0.027
3254 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.170H-atom parameters constrained
S = 1.07Δρmax = 0.34 e Å3
2052 reflectionsΔρmin = 0.33 e Å3
120 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.31244 (10)0.14778 (8)0.03374 (5)0.0640 (3)
O10.2948 (4)0.0791 (3)0.32862 (19)0.0927 (7)
C10.3882 (4)0.1053 (4)0.3166 (2)0.0643 (6)
C20.4007 (4)0.1919 (4)0.2004 (2)0.0596 (6)
H2A0.54960.27650.19490.072*
H2B0.33590.28180.19240.072*
C30.2892 (4)0.0231 (4)0.1015 (2)0.0576 (6)
H3A0.13980.06270.10580.069*
H3B0.35520.06560.10700.069*
C40.1796 (3)0.0637 (3)0.14013 (19)0.0524 (5)
C50.1709 (4)0.0158 (4)0.2556 (2)0.0598 (6)
C60.0713 (5)0.1782 (4)0.3408 (2)0.0709 (7)
H60.06620.14740.41820.085*
C70.0202 (4)0.3834 (4)0.3140 (2)0.0714 (7)
H70.08640.48960.37280.086*
C80.0132 (4)0.4303 (4)0.2004 (2)0.0687 (7)
H80.07620.56900.18190.082*
C90.0874 (4)0.2723 (4)0.1125 (2)0.0639 (6)
H90.09350.30500.03530.077*
C100.4997 (5)0.2615 (5)0.4198 (2)0.0793 (8)
H10A0.41790.32960.42830.119*
H10B0.63910.36350.40830.119*
H10C0.51320.19110.48840.119*
C110.2678 (6)0.2074 (4)0.2878 (3)0.0811 (8)
H11A0.23570.21110.37050.122*
H11B0.41980.27490.26140.122*
H11C0.20950.27870.25190.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0807 (5)0.0453 (4)0.0554 (4)0.0233 (3)0.0076 (3)0.0088 (2)
O10.1279 (18)0.0579 (11)0.0675 (12)0.0307 (12)0.0024 (11)0.0022 (9)
C10.0754 (15)0.0555 (13)0.0581 (13)0.0312 (12)0.0025 (11)0.0110 (10)
C20.0651 (14)0.0516 (12)0.0570 (13)0.0263 (11)0.0029 (10)0.0126 (10)
C30.0650 (13)0.0497 (12)0.0524 (12)0.0248 (10)0.0043 (10)0.0106 (9)
C40.0569 (12)0.0455 (11)0.0511 (11)0.0225 (9)0.0066 (9)0.0084 (8)
C50.0675 (14)0.0561 (13)0.0554 (12)0.0299 (11)0.0101 (10)0.0004 (10)
C60.0868 (18)0.0749 (17)0.0496 (13)0.0406 (14)0.0041 (12)0.0053 (11)
C70.0769 (16)0.0612 (15)0.0637 (15)0.0276 (13)0.0019 (12)0.0204 (12)
C80.0773 (16)0.0463 (12)0.0700 (15)0.0221 (11)0.0061 (12)0.0092 (11)
C90.0798 (16)0.0493 (12)0.0549 (13)0.0258 (11)0.0104 (11)0.0016 (10)
C100.106 (2)0.0705 (17)0.0544 (14)0.0401 (16)0.0038 (14)0.0132 (12)
C110.113 (2)0.0628 (16)0.0651 (16)0.0389 (16)0.0217 (15)0.0098 (12)
Geometric parameters (Å, º) top
S1—C41.771 (2)C6—C71.375 (4)
S1—C31.804 (2)C6—H60.9300
O1—C11.204 (3)C7—C81.367 (4)
C1—C21.488 (4)C7—H70.9300
C1—C101.506 (3)C8—C91.388 (3)
C2—C31.522 (3)C8—H80.9300
C2—H2A0.9700C9—H90.9300
C2—H2B0.9700C10—H10A0.9600
C3—H3A0.9700C10—H10B0.9600
C3—H3B0.9700C10—H10C0.9600
C4—C51.390 (3)C11—H11A0.9600
C4—C91.398 (3)C11—H11B0.9600
C5—C61.386 (3)C11—H11C0.9600
C5—C111.506 (3)
C4—S1—C3103.72 (11)C7—C6—H6119.1
O1—C1—C2122.4 (2)C5—C6—H6119.1
O1—C1—C10121.3 (3)C8—C7—C6119.5 (2)
C2—C1—C10116.4 (2)C8—C7—H7120.2
C1—C2—C3112.78 (19)C6—C7—H7120.2
C1—C2—H2A109.0C7—C8—C9120.4 (2)
C3—C2—H2A109.0C7—C8—H8119.8
C1—C2—H2B109.0C9—C8—H8119.8
C3—C2—H2B109.0C8—C9—C4119.9 (2)
H2A—C2—H2B107.8C8—C9—H9120.1
C2—C3—S1108.38 (16)C4—C9—H9120.1
C2—C3—H3A110.0C1—C10—H10A109.5
S1—C3—H3A110.0C1—C10—H10B109.5
C2—C3—H3B110.0H10A—C10—H10B109.5
S1—C3—H3B110.0C1—C10—H10C109.5
H3A—C3—H3B108.4H10A—C10—H10C109.5
C5—C4—C9119.8 (2)H10B—C10—H10C109.5
C5—C4—S1117.25 (18)C5—C11—H11A109.5
C9—C4—S1122.96 (18)C5—C11—H11B109.5
C6—C5—C4118.5 (2)H11A—C11—H11B109.5
C6—C5—C11120.6 (2)C5—C11—H11C109.5
C4—C5—C11120.9 (2)H11A—C11—H11C109.5
C7—C6—C5121.9 (2)H11B—C11—H11C109.5
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10c···O1i0.962.673.579 (4)158
C3—H3a···S1ii0.972.993.855 (3)149
C3—H3b···S1iii0.973.023.870 (3)147
C2—H2a···Cgii0.972.863.628 (4)137
C2—H2b···Cgiv0.972.953.678 (4)133
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C4–C9 phenyl ring.
D—H···AD—HH···AD···AD—H···A
C10—H10c···O1i0.962.673.579 (4)158
C3—H3a···S1ii0.972.993.855 (3)149
C3—H3b···S1iii0.973.023.870 (3)147
C2—H2a···Cgii0.972.863.628 (4)137
C2—H2b···Cgiv0.972.953.678 (4)133
Symmetry codes: (i) x+1, y, z1; (ii) x, y, z; (iii) x+1, y, z; (iv) x+1, y+1, z+1.
 

Acknowledgements

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Projects No. 172014, 172035 and 172034).

References

First citationAgilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFrancuski, B. M., Novaković, S. B. & Bogdanović, G. A. (2011). CrystEngComm, 13, 3580–3591.  Web of Science CSD CrossRef CAS Google Scholar
First citationMacrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationNardelli, M. (1995). J. Appl. Cryst. 28, 659.  CrossRef IUCr Journals Google Scholar
First citationPage, P. C. B. (1999). Editor. Organosulfur Chemistry, Vols. 1–2. Berlin: Springer.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationStevanović, D., Pejović, A., Damljanović, I., Vukićević, M., Bogdanović, G. A. & Vukićević, R. D. (2012). Tetrahedron Lett. 53, 6257–6260.  Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds