supplementary materials


sj5354 scheme

Acta Cryst. (2013). E69, o1623-o1624    [ doi:10.1107/S1600536813027244 ]

1-Methyl-4-[(E)-2-(3-hy­droxy-4-meth­oxy­phen­yl)ethen­yl]pyridinium 4-bromo­benzene­sulfonate monohydrate

S. Chantrapromma, P. Ruanwas, B. Jindawong and H.-K. Fun

Abstract top

In the title hydrated salt, C15H16NO2+·C6H4BrO3S-·H2O, the cation exists in an E conformation with respect to the ethenyl bond and is almost planar, with a dihedral angle of 2.62 (12)° between the planes of the pyridinium and benzene rings. The meth­oxy substituent deviates slightly from the plane of its attached benzene ring [Cmeth­yl-O-C-C torsion angle = -11.6 (6)°]. In the crystal, the cations, anion and water mol­ecules are linked together into chains along [010] by O-H...O hydrogen bonds and weak C-H...O inter­actions. There is a short Br...O contact [3.029 (2) Å]. The crystal structure also features C-H...[pi] inter­actions involving the benzene ring of the anion.

Comment top

The stilbene scaffold is a basic element for a number of biologically active natural and synthetic compounds. Stilbene-based compounds are extensively present in nature and have attracted chemists and biologists because of their wide range of biological activities, acting as antibacterial (Chanawanno et al., 2010), anticancer (Belluti et al., 2010) and antioxidant (Frombaum et al., 2012) agents. In addition, some stilbenes also exhibit non-linear optical (Ruanwas et al., 2010) and fluorescent properties (Li et al., 2013). They are also generally used in the manufacturing industry as whitening agents (Hussain et al., 2009). Due to these interesting properties, the title pyridinium-stilbene (I) was synthesized. We report herein the synthesis and crystal structure of (I).

The asymmetric unit of (I) consists of a C15H16NO2+ cation, a C6H4BrSO3- anion and a H2O molecule (Fig. 1). All bond lengths (Allen et al., 1987) and angles in both the cation and anion are normal and compare well with those found in closely related structures (Chanawanno et al., 2009; Fun et al., 2011; Jindawong et al., 2005). The cation exists in an E configuration with respect to the C13 C14 double bond [1.326 (5) Å] and the C12—C13—C14—C15 torsion angle is 179.3 (3)°. The cation is essentially planar with a dihedral angle between the pyridinium and benzene rings of the cation of 2.62 (12)°. The hydroxy group lies close to the plane of the C7···C12 benzene ring whereas the methoxy group is slightly twisted from this plane with a C21–O5–C9–C10 torsion angle of -11.6 (6)°. The benzene ring of the 4-bromobenzenesulfonate anion makes dihedral angles of 80.35 (15) and 78.37 (15)° with pyridinium and benzene rings of the cation, respectively.

In the crystal packing (Fig. 2), intermolecular O—H···O hydrogen bonds form between the water molecule (O1W) and the O3 (sulfonate), O4 (hydroxy) and O5 (methoxy) atoms, and between the hydroxy substituent (O4) and the water molecule (O1W) (Table 1). Atoms O1 and O4 are involved in weak intermolecular C—H···O interactions (Table 1). The cations, anions and water molecules are linked into chains along [0 1 0] through these O–H···O and weak C—H···O hydrogen bonds (Fig. 2 and Table 1). The crystal structure is further stabilized by C—H···π interactions involving the centroid of the benzene ring of the cation (Table 1). A short Br···O contact [3.029 (2) Å; symmetry code +x, -1+y, z] also forms between adjacent anions.

Related literature top

For bond-length data, see: Allen et al. (1987). For applications of stilbene derivatives, see: Belluti et al. (2010); Chanawanno et al. (2010); Frombaum et al. (2012); Hussain et al. (2009); Jindawong et al. (2005); Li et al. (2013); Ruanwas et al. (2010). For related structures, see: Chanawanno et al. (2009); Fun et al. (2011); Jindawong et al. (2005). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer, (1986).

Experimental top

First of all, 1-methyl-4-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]pyridinium iodide (compound A) was prepared by mixing a solution (1:1:1 molar ratio) of 1,4-dimethylpyridinium iodide (2.98 g, 12.68 mmol), isovanillin (1.96 g, 12.86 mmol) and piperidine (1.09 g, 12.80 mmol). The resulting solution was refluxed for 3 h under a nitrogen atmosphere. The solid which formed was filtered, washed with diethylether and recrystallized from methanol, to give brown crystals of compound A (3.99 g, 85% yield Mp. 503-504 K). Thereafter, the title compound was synthesized by mixing a solution of compound A (0.21 g, 0.58 mmol) in hot methanol (45 ml) and a solution of silver (I) 4-bromobenzenesulfonate (Jindawong et al., 2005), (0.20 g, 0.58 mmol) in hot methanol (40 ml). The mixture yielded a yellow solid of silver iodide immediately. After stirring the mixture for 20 min, the precipitate of silver iodide was removed and the resulting yellow solution was evaporated to yield the title compound as a yellow solid (0.27 g, 94% yield). Yellow needle-shaped single crystals of the title compound suitable for x-ray structure determination were recrystalized from ethanol/methanol (1:1 v/v) by slow evaporation of the solvent at room temperature over several days, Mp. 511–512 K.

Refinement top

Hydroxy and water H atoms were located in difference maps and refined isotropically. The remaining H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH, and 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups.

Computing details top

Data collection: APEX2 (Bruker, 2005); cell refinement: APEX2 (Bruker, 2005); data reduction: SAINT (Bruker, 2005); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing 40% probability displacement ellipsoids. A hydrogen bond is shown as a dashed line.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed approximately along the c axis. Only H atoms involved in O—H···O hydrogen bonds and weak C—H···O interactions are shown for clarity. Hydrogen bonds are drawn as dashed lines.
1-Methyl-4-[(E)-2-(3-hydroxy-4-methoxyphenyl)ethenyl]pyridinium 4-bromobenzenesulfonate monohydrate top
Crystal data top
C15H16NO2+·C6H4BrO3S·H2OZ = 2
Mr = 496.37F(000) = 508
Triclinic, P1Dx = 1.538 Mg m3
Hall symbol: -P 1Melting point = 511–512 K
a = 9.7426 (7) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.8821 (7) ÅCell parameters from 3717 reflections
c = 11.8356 (8) Åθ = 2.1–25.0°
α = 80.107 (1)°µ = 2.05 mm1
β = 73.140 (1)°T = 100 K
γ = 83.297 (1)°Needle, yellow
V = 1071.60 (13) Å30.54 × 0.51 × 0.16 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3717 independent reflections
Radiation source: sealed tube3392 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
φ and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
h = 1111
Tmin = 0.402, Tmax = 0.728k = 1111
5431 measured reflectionsl = 1412
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125 w = 1/[σ2(Fo2) + (0.0865P)2 + 0.2408P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3717 reflectionsΔρmax = 0.59 e Å3
286 parametersΔρmin = 0.82 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.026 (3)
Crystal data top
C15H16NO2+·C6H4BrO3S·H2Oγ = 83.297 (1)°
Mr = 496.37V = 1071.60 (13) Å3
Triclinic, P1Z = 2
a = 9.7426 (7) ÅMo Kα radiation
b = 9.8821 (7) ŵ = 2.05 mm1
c = 11.8356 (8) ÅT = 100 K
α = 80.107 (1)°0.54 × 0.51 × 0.16 mm
β = 73.140 (1)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3717 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
3392 reflections with I > 2σ(I)
Tmin = 0.402, Tmax = 0.728Rint = 0.027
5431 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.043H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.125Δρmax = 0.59 e Å3
S = 1.05Δρmin = 0.82 e Å3
3717 reflectionsAbsolute structure: ?
286 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.33252 (3)0.08552 (3)0.17801 (3)0.05706 (18)
S10.31851 (7)0.54351 (6)0.25594 (6)0.0432 (2)
O10.3962 (3)0.6148 (2)0.14279 (19)0.0682 (7)
O20.3892 (3)0.5389 (2)0.3481 (2)0.0690 (6)
O30.1683 (2)0.5911 (2)0.2912 (3)0.0717 (7)
O40.0748 (2)0.0170 (3)0.57781 (19)0.0612 (6)
H4A0.021 (4)0.083 (4)0.573 (3)0.060 (10)*
O50.3044 (3)0.1435 (3)0.5684 (2)0.0673 (7)
N10.1966 (3)0.4820 (3)1.2500 (2)0.0552 (6)
C10.3205 (3)0.3703 (3)0.2328 (2)0.0370 (5)
C20.3903 (3)0.3303 (3)0.1220 (2)0.0397 (5)
H2A0.43620.39470.05950.048*
C30.3917 (3)0.1959 (3)0.1045 (2)0.0413 (6)
H3A0.43750.16920.03030.050*
C40.3239 (3)0.1009 (3)0.1991 (2)0.0414 (6)
C50.2534 (3)0.1391 (3)0.3101 (2)0.0473 (6)
H5A0.20810.07450.37280.057*
C60.2516 (3)0.2742 (3)0.3261 (2)0.0434 (6)
H6A0.20400.30130.39990.052*
C70.0825 (3)0.0955 (3)0.7566 (2)0.0459 (6)
H7A0.00070.15280.75830.055*
C80.1366 (3)0.0180 (3)0.6658 (2)0.0450 (6)
C90.2618 (3)0.0698 (3)0.6621 (3)0.0512 (7)
C100.3307 (3)0.0750 (4)0.7487 (3)0.0607 (8)
H10A0.41470.13130.74600.073*
C110.2752 (4)0.0035 (4)0.8403 (3)0.0630 (9)
H11A0.32260.00160.89880.076*
C120.1506 (3)0.0898 (3)0.8470 (2)0.0483 (7)
C130.0935 (3)0.1690 (3)0.9448 (3)0.0536 (7)
H13A0.14570.15961.00060.064*
C140.0245 (3)0.2534 (3)0.9641 (3)0.0518 (7)
H14A0.07670.26410.90820.062*
C150.0802 (3)0.3305 (3)1.0634 (2)0.0482 (6)
C160.0137 (3)0.3290 (4)1.1535 (3)0.0601 (8)
H16A0.07210.27581.15150.072*
C170.0727 (4)0.4041 (4)1.2442 (3)0.0621 (8)
H17A0.02650.40161.30320.074*
C180.2637 (4)0.4864 (4)1.1655 (3)0.0610 (8)
H18A0.34920.54081.16980.073*
C190.2093 (3)0.4127 (4)1.0733 (3)0.0580 (8)
H19A0.25850.41691.01600.070*
C200.2569 (5)0.5637 (4)1.3496 (3)0.0757 (10)
H20A0.35720.58771.35710.114*
H20B0.20690.64601.33360.114*
H20C0.24560.51011.42250.114*
C210.4426 (4)0.2138 (5)0.5445 (4)0.0830 (12)
H21A0.46100.25350.47250.125*
H21B0.44670.28540.60970.125*
H21C0.51370.15010.53500.125*
O1W0.0853 (3)0.7571 (3)0.4734 (2)0.0615 (6)
H1W10.143 (5)0.796 (5)0.490 (4)0.087 (16)*
H2W10.120 (5)0.706 (5)0.423 (4)0.082 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.0620 (3)0.0341 (2)0.0688 (3)0.01219 (14)0.00293 (16)0.01084 (14)
S10.0501 (4)0.0321 (4)0.0444 (4)0.0052 (3)0.0061 (3)0.0074 (3)
O10.1028 (18)0.0350 (11)0.0525 (12)0.0186 (11)0.0039 (11)0.0027 (9)
O20.0927 (18)0.0552 (13)0.0709 (14)0.0150 (12)0.0346 (13)0.0139 (11)
O30.0546 (14)0.0496 (13)0.1069 (18)0.0051 (11)0.0082 (12)0.0308 (12)
O40.0587 (13)0.0770 (16)0.0564 (13)0.0155 (12)0.0285 (10)0.0243 (11)
O50.0547 (13)0.0828 (17)0.0703 (14)0.0182 (12)0.0225 (11)0.0339 (12)
N10.0515 (14)0.0595 (16)0.0491 (13)0.0117 (12)0.0023 (11)0.0081 (11)
C10.0358 (12)0.0314 (12)0.0415 (13)0.0042 (9)0.0072 (10)0.0035 (10)
C20.0385 (13)0.0331 (13)0.0404 (13)0.0050 (10)0.0029 (10)0.0011 (10)
C30.0414 (13)0.0413 (14)0.0374 (12)0.0029 (11)0.0031 (10)0.0088 (10)
C40.0395 (13)0.0308 (12)0.0504 (14)0.0062 (10)0.0066 (11)0.0044 (10)
C50.0489 (15)0.0361 (14)0.0483 (15)0.0130 (11)0.0004 (12)0.0010 (11)
C60.0436 (14)0.0439 (14)0.0362 (12)0.0063 (11)0.0008 (10)0.0065 (11)
C70.0360 (13)0.0552 (16)0.0451 (14)0.0043 (11)0.0100 (11)0.0046 (12)
C80.0405 (14)0.0519 (16)0.0424 (14)0.0059 (11)0.0114 (11)0.0049 (11)
C90.0434 (15)0.0558 (17)0.0542 (16)0.0043 (13)0.0131 (12)0.0074 (13)
C100.0456 (16)0.073 (2)0.067 (2)0.0074 (15)0.0225 (15)0.0151 (16)
C110.0545 (18)0.082 (2)0.0612 (19)0.0042 (16)0.0302 (15)0.0147 (17)
C120.0418 (14)0.0584 (18)0.0457 (14)0.0108 (13)0.0127 (11)0.0045 (12)
C130.0492 (16)0.069 (2)0.0475 (15)0.0099 (14)0.0185 (13)0.0073 (14)
C140.0492 (16)0.0628 (19)0.0464 (15)0.0109 (14)0.0160 (12)0.0062 (13)
C150.0410 (14)0.0563 (17)0.0451 (14)0.0122 (12)0.0089 (11)0.0003 (13)
C160.0465 (16)0.081 (2)0.0544 (17)0.0015 (15)0.0150 (13)0.0177 (16)
C170.0539 (18)0.081 (2)0.0534 (17)0.0055 (16)0.0158 (14)0.0145 (16)
C180.0500 (17)0.067 (2)0.0607 (18)0.0004 (15)0.0111 (14)0.0061 (15)
C190.0522 (17)0.071 (2)0.0527 (17)0.0032 (15)0.0192 (14)0.0075 (15)
C200.080 (2)0.079 (3)0.064 (2)0.005 (2)0.0029 (18)0.0287 (19)
C210.064 (2)0.090 (3)0.095 (3)0.023 (2)0.022 (2)0.036 (2)
O1W0.0623 (14)0.0660 (15)0.0545 (13)0.0033 (12)0.0109 (11)0.0183 (11)
Geometric parameters (Å, º) top
Br1—C41.890 (3)C9—C101.370 (4)
S1—O11.440 (2)C10—C111.386 (5)
S1—O21.441 (2)C10—H10A0.9300
S1—O31.445 (2)C11—C121.390 (4)
S1—C11.777 (2)C11—H11A0.9300
O4—C81.348 (3)C12—C131.448 (4)
O4—H4A0.79 (4)C13—C141.326 (5)
O5—C91.369 (4)C13—H13A0.9300
O5—C211.416 (4)C14—C151.449 (4)
N1—C181.338 (4)C14—H14A0.9300
N1—C171.344 (4)C15—C161.397 (4)
N1—C201.483 (4)C15—C191.402 (4)
C1—C61.390 (4)C16—C171.361 (5)
C1—C21.391 (4)C16—H16A0.9300
C2—C31.377 (4)C17—H17A0.9300
C2—H2A0.9300C18—C191.359 (5)
C3—C41.388 (4)C18—H18A0.9300
C3—H3A0.9300C19—H19A0.9300
C4—C51.389 (4)C20—H20A0.9600
C5—C61.377 (4)C20—H20B0.9600
C5—H5A0.9300C20—H20C0.9600
C6—H6A0.9300C21—H21A0.9600
C7—C81.371 (4)C21—H21B0.9600
C7—C121.404 (4)C21—H21C0.9600
C7—H7A0.9300O1W—H1W10.80 (5)
C8—C91.406 (4)O1W—H2W10.81 (4)
O1—S1—O2112.81 (16)C10—C11—C12121.9 (3)
O1—S1—O3112.92 (16)C10—C11—H11A119.1
O2—S1—O3113.31 (16)C12—C11—H11A119.1
O1—S1—C1105.43 (12)C11—C12—C7117.4 (3)
O2—S1—C1106.15 (12)C11—C12—C13120.8 (3)
O3—S1—C1105.34 (12)C7—C12—C13121.8 (3)
C8—O4—H4A111 (3)C14—C13—C12127.6 (3)
C9—O5—C21118.7 (3)C14—C13—H13A116.2
C18—N1—C17119.8 (3)C12—C13—H13A116.2
C18—N1—C20120.5 (3)C13—C14—C15126.5 (3)
C17—N1—C20119.6 (3)C13—C14—H14A116.7
C6—C1—C2119.9 (2)C15—C14—H14A116.7
C6—C1—S1119.64 (19)C16—C15—C19116.0 (3)
C2—C1—S1120.50 (19)C16—C15—C14124.2 (3)
C3—C2—C1120.3 (2)C19—C15—C14119.8 (3)
C3—C2—H2A119.8C17—C16—C15120.9 (3)
C1—C2—H2A119.8C17—C16—H16A119.5
C2—C3—C4119.1 (2)C15—C16—H16A119.5
C2—C3—H3A120.4N1—C17—C16121.1 (3)
C4—C3—H3A120.4N1—C17—H17A119.4
C3—C4—C5121.3 (2)C16—C17—H17A119.4
C3—C4—Br1119.4 (2)N1—C18—C19121.2 (3)
C5—C4—Br1119.21 (19)N1—C18—H18A119.4
C6—C5—C4119.0 (2)C19—C18—H18A119.4
C6—C5—H5A120.5C18—C19—C15121.0 (3)
C4—C5—H5A120.5C18—C19—H19A119.5
C5—C6—C1120.4 (2)C15—C19—H19A119.5
C5—C6—H6A119.8N1—C20—H20A109.5
C1—C6—H6A119.8N1—C20—H20B109.5
C8—C7—C12121.1 (3)H20A—C20—H20B109.5
C8—C7—H7A119.5N1—C20—H20C109.5
C12—C7—H7A119.5H20A—C20—H20C109.5
O4—C8—C7123.9 (2)H20B—C20—H20C109.5
O4—C8—C9115.8 (2)O5—C21—H21A109.5
C7—C8—C9120.3 (2)O5—C21—H21B109.5
O5—C9—C10125.6 (3)H21A—C21—H21B109.5
O5—C9—C8115.0 (2)O5—C21—H21C109.5
C10—C9—C8119.4 (3)H21A—C21—H21C109.5
C9—C10—C11120.0 (3)H21B—C21—H21C109.5
C9—C10—H10A120.0H1W1—O1W—H2W1115 (4)
C11—C10—H10A120.0
O1—S1—C1—C6179.1 (2)C7—C8—C9—C101.3 (5)
O2—S1—C1—C661.0 (2)O5—C9—C10—C11179.0 (3)
O3—S1—C1—C659.5 (2)C8—C9—C10—C111.4 (5)
O1—S1—C1—C20.9 (3)C9—C10—C11—C120.5 (6)
O2—S1—C1—C2119.0 (2)C10—C11—C12—C70.4 (5)
O3—S1—C1—C2120.5 (2)C10—C11—C12—C13178.9 (3)
C6—C1—C2—C30.1 (4)C8—C7—C12—C110.5 (4)
S1—C1—C2—C3179.9 (2)C8—C7—C12—C13178.8 (3)
C1—C2—C3—C40.6 (4)C11—C12—C13—C14178.9 (3)
C2—C3—C4—C50.8 (4)C7—C12—C13—C140.4 (5)
C2—C3—C4—Br1177.19 (19)C12—C13—C14—C15179.3 (3)
C3—C4—C5—C60.2 (4)C13—C14—C15—C161.6 (5)
Br1—C4—C5—C6177.8 (2)C13—C14—C15—C19178.1 (3)
C4—C5—C6—C10.6 (4)C19—C15—C16—C170.3 (5)
C2—C1—C6—C50.8 (4)C14—C15—C16—C17179.9 (3)
S1—C1—C6—C5179.3 (2)C18—N1—C17—C160.0 (5)
C12—C7—C8—O4178.7 (3)C20—N1—C17—C16179.4 (4)
C12—C7—C8—C90.4 (5)C15—C16—C17—N10.1 (6)
C21—O5—C9—C1011.6 (6)C17—N1—C18—C190.3 (5)
C21—O5—C9—C8168.1 (3)C20—N1—C18—C19179.6 (3)
O4—C8—C9—O50.6 (4)N1—C18—C19—C150.5 (6)
C7—C8—C9—O5179.0 (3)C16—C15—C19—C180.5 (5)
O4—C8—C9—C10179.8 (3)C14—C15—C19—C18179.8 (3)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.80 (5)2.52 (5)3.015 (4)122 (4)
O1W—H1W1···O5i0.80 (5)2.22 (5)3.008 (4)166 (4)
O1W—H2W1···O30.82 (5)2.00 (5)2.809 (4)169 (5)
O4—H4A···O1Wii0.79 (4)1.88 (4)2.656 (4)168 (3)
C2—H2A···O1iii0.932.493.216 (3)135
C5—H5A···O40.932.403.241 (3)150
C18—H18A···O1iv0.932.603.476 (5)158
C10—H10A···Cg1v0.932.783.672 (4)160
C16—H16A···Cg1vi0.932.723.543 (3)148
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y, z+1; (v) x+1, y, z+1; (vi) x, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···O4i0.80 (5)2.52 (5)3.015 (4)122 (4)
O1W—H1W1···O5i0.80 (5)2.22 (5)3.008 (4)166 (4)
O1W—H2W1···O30.82 (5)2.00 (5)2.809 (4)169 (5)
O4—H4A···O1Wii0.79 (4)1.88 (4)2.656 (4)168 (3)
C2—H2A···O1iii0.932.493.216 (3)135
C5—H5A···O40.932.403.241 (3)150
C18—H18A···O1iv0.932.603.476 (5)158
C10—H10A···Cg1v0.932.783.672 (4)160
C16—H16A···Cg1vi0.932.723.543 (3)148
Symmetry codes: (i) x, y+1, z; (ii) x, y+1, z+1; (iii) x+1, y+1, z; (iv) x1, y, z+1; (v) x+1, y, z+1; (vi) x, y, z+1.
Acknowledgements top

The authors thank Prince of Songkla University for generous support. The authors also thank the Universiti Sains Malaysia for the APEX DE2012 (grant No. 1002/PFIZIK/910323).

references
References top

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Belluti, F., Fontana, G., Bo, L. D., Carenini, N., Giommarelli, C. & Zunino, F. (2010). Bioorg. Med. Chem. 18, 3543–3550.

Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208.

Chanawanno, K., Chantrapromma, S. & Fun, H.-K. (2009). Acta Cryst. E65, o1549–o1550.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Frombaum, M., Le Clanche, S., Bonnefont-Rousselot, D. & Borderie, D. (2012). Biochimie, 94, 269–276.

Fun, H. K., Chantrapromma, S. & Jansrisewangwong, P. (2011). Acta Cryst. E67, o105–o106.

Hussain, M., Khan, K. M., Ali, S. I., Parveen, R. & Shim, W. S. (2009). Fibers Polym.. 10, 407–412.

Jindawong, B., Chantrapromma, S., Fun, H.-K., Yu, X.-L. & Karalai, C. (2005). Acta Cryst. E61, o1340–o1342.

Li, X., Lu, H., He, D., Luo, C. & Huang, J. (2013). J. Fluoresc. 23, 1039–1044.

Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padakid, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.