[Journal logo]

Volume 69 
Part 11 
Pages m598-m599  
November 2013  

Received 4 October 2013
Accepted 7 October 2013
Online 12 October 2013

Key indicators
Single-crystal X-ray study
T = 168 K
Mean [sigma](C-C) = 0.008 Å
R = 0.063
wR = 0.105
Data-to-parameter ratio = 11.0
Details
Open access

Aqua­(azido)[N-(pyridin-2-ylcarbon­yl)pyridine-2-carboxamido-[kappa]3N,N',N'']copper(II)

aDepartment of Chemistry, Clark University, 950 Main St, Worcester, MA 01610, USA, and bDepartment of Chemistry, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
Correspondence e-mail: mturnbull@clarku.edu

The title compound, [Cu(C12H8N3O2)(N3)(H2O)], was formed by the air oxidation of 2-(amino­meth­yl)pyridine in 95% ethanol in the presence of copper(II) nitrate and sodium azide with condensation of the resulting picolinamide mol­ecules to generate the imide moiety. The CuII ion has a square-pyramidal coordination sphere, the basal plane being occupied by four N atoms [two pyridine (py) N atoms, the imide N atom and an azide N atom] in a nearly planar array [mean deviation = 0.048 (6) Å] with the CuII ion displaced slightly from the plane [0.167 (5) Å] toward the fifth ligand. The apical position is occupied by a coordinating water mol­ecule [Cu-O = 2.319 (4) Å]. The crystal structure is stabilized by hydrogen-bonding inter­actions between the water mol­ecules and carbonyl O atoms. The inversion-related square-pyramidal complex molecules pack base-to-base with long Cu...Npy contact distances of 3.537 (9) Å, preventing coordination of a sixth ligand.

Related literature

For magneto-structural relationships in CuII complexes, see: Landee & Turnbull (2013[Landee, C. P. & Turnbull, M. M. (2013). Eur. J. Inorg. Chem. pp. 2266-2285.]). For copper(II)-catalysed air-oxidation of 2-amino­methyl­pyridine, see: Sahu et al. (2010[Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448-1454.]); Turnbull et al. (2013[Turnbull, M. M., Bruda, S. & Wikaira, J. L. (2013). Eur. Chem. Bull. 2, 2038-2240.]). For the corresponding dicyanamide complex, see: Vangdal et al. (2002[Vangdal, B., Carranza, J., Lloret, F., Julve, M. & Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566-574.]) and for the tri­cyano­methanide complex, see: de Gomes et al. (2008[Gomes, D. C. de, Toma, L. M., Stumpf, H. O., Adams, H., Thomas, J. A., Lloret, F. L. & Julve, M. (2008). Polyhedron, 27, 559-573.]). For the bromide complex, see: Zhou et al. (2006[Zhou, X.-P., Li, D., Zheng, S.-L., Zhang, X. & Wu, T. (2006). Inorg. Chem. 45, 7119-7125.]) and for the fluoride and formate analogues, see: Borras et al. (2007[Borras, J., Alzuet, G., Gonzalez-Alvarez, M., Garcia-Gimenez, J. L., Macias, B. & Liu-Gonzalez, M. (2007). Eur. J. Inorg. Chem. pp. 822-834.]). For the cyanate and thio­cyanate complexes, see: Dey et al. (2002[Dey, S. K., Choudhury, C. R., Dey, S. P., Dey, D. K., Mondal, N., Mahalli, S. O. G., Malik, K. M. A. & Mitra, S. (2002). J. Chem. Res. pp. 496-499.]) and Madariaga et al. (1991[Madariaga, G., Zuñiga, F.-J., Rojo, T. & Folgado, J.-V. (1991). Acta Cryst. C47, 1632-1634.]), respectively. For a related 2-amino­methyl­pyridine structure, see: Bruda et al. (2006[Bruda, S., Turnbull, M. M., Landee, C. P. & Xu, Q. (2006). Inorg. Chim. Acta, 359, 298-308.]). For the [tau] parameter as a geometry predictor in coordination complexes, see: Addison et al. (1984[Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C12H8N3O2)(N3)(H2O)]

  • Mr = 349.80

  • Triclinic, [P \overline 1]

  • a = 7.402 (4) Å

  • b = 8.900 (5) Å

  • c = 10.606 (6) Å

  • [alpha] = 78.186 (9)°

  • [beta] = 84.118 (8)°

  • [gamma] = 70.040 (7)°

  • V = 642.4 (6) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 1.72 mm-1

  • T = 168 K

  • 0.28 × 0.06 × 0.03 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.]) Tmin = 0.854, Tmax = 1.000

  • 7577 measured reflections

  • 2258 independent reflections

  • 1837 reflections with I > 2[sigma](I)

  • Rint = 0.063

Refinement
  • R[F2 > 2[sigma](F2)] = 0.063

  • wR(F2) = 0.105

  • S = 1.17

  • 2258 reflections

  • 205 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.50 e Å-3

  • [Delta][rho]min = -0.69 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1-H1A...O9i 0.85 (2) 2.10 (4) 2.843 (5) 145 (5)
O1-H1B...O7ii 0.84 (2) 2.13 (3) 2.922 (5) 157 (5)
O1-H1A...O7i 0.85 (2) 2.45 (4) 3.105 (5) 134 (5)
Symmetry codes: (i) -x, -y+1, -z; (ii) x+1, y, z.

Data collection: SMART (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemans Analytical X-ray Instruments, Inc. Madison, Wisconsin, USA.]); cell refinement: SAINT (Siemens, 1996[Siemens (1996). SMART and SAINT. Siemans Analytical X-ray Instruments, Inc. Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5358 ).


References

Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.  [CSD] [CrossRef]
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Borras, J., Alzuet, G., Gonzalez-Alvarez, M., Garcia-Gimenez, J. L., Macias, B. & Liu-Gonzalez, M. (2007). Eur. J. Inorg. Chem. pp. 822-834.
Bruda, S., Turnbull, M. M., Landee, C. P. & Xu, Q. (2006). Inorg. Chim. Acta, 359, 298-308.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Dey, S. K., Choudhury, C. R., Dey, S. P., Dey, D. K., Mondal, N., Mahalli, S. O. G., Malik, K. M. A. & Mitra, S. (2002). J. Chem. Res. pp. 496-499.  [CrossRef]
Gomes, D. C. de, Toma, L. M., Stumpf, H. O., Adams, H., Thomas, J. A., Lloret, F. L. & Julve, M. (2008). Polyhedron, 27, 559-573.  [ChemPort]
Landee, C. P. & Turnbull, M. M. (2013). Eur. J. Inorg. Chem. pp. 2266-2285.  [Web of Science] [CrossRef]
Madariaga, G., Zuñiga, F.-J., Rojo, T. & Folgado, J.-V. (1991). Acta Cryst. C47, 1632-1634.  [CSD] [CrossRef] [IUCr Journals]
Sahu, R., Padhi, S. K., Jena, H. S. & Manivannan, V. (2010). Inorg. Chim. Acta, 363, 1448-1454.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Siemens (1996). SMART and SAINT. Siemans Analytical X-ray Instruments, Inc. Madison, Wisconsin, USA.
Turnbull, M. M., Bruda, S. & Wikaira, J. L. (2013). Eur. Chem. Bull. 2, 2038-2240.
Vangdal, B., Carranza, J., Lloret, F., Julve, M. & Sletten, J. (2002). J. Chem. Soc. Dalton Trans. pp. 566-574.  [CSD] [CrossRef]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Zhou, X.-P., Li, D., Zheng, S.-L., Zhang, X. & Wu, T. (2006). Inorg. Chem. 45, 7119-7125.  [Web of Science] [CSD] [CrossRef] [PubMed] [ChemPort]


Acta Cryst (2013). E69, m598-m599   [ doi:10.1107/S1600536813027499 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.