organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1664-o1665

4-Meth­­oxy-N-[(4-methyl­phen­yl)sulfon­yl]benzamide including an unknown solvate

aDepartment of Studies and Research in Chemistry, Tumkur University, Tumkur, Karnataka 572 103, India, bDepartment of Studies and Research in Physics, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India, cDepartment of Physics, Karnatak University, Dharwad, Karnataka 580 003, India, dUniversity College of Science, Tumkur University, Tumkur, India, and eDepartment of Studies and Research in Chemistry, U.C.S., Tumkur University, Tumkur, Karnataka 572 103, India
*Correspondence e-mail: pasuchetan@yahoo.co.in

(Received 12 September 2013; accepted 14 October 2013; online 19 October 2013)

In the title compound, C15H15NO4S, the dihedral angle between the benzene rings is 78.62 (16)°. In the crystal, adjacent mol­ecules are linked along the c axis into C(4) chains through strong N—H⋯O hydrogen bonds. Mol­ecules are further connected through C—H⋯O hydrogen bonds into a hexa­meric unit generating an R66(66) motif. Another C—H⋯O inter­action connects the mol­ecules along the c axis, forming C(5) chains. A region of disordered electron density, most probably disordered methanol–water solvent mol­ecules, was treated with the SQUEEZE routine in PLATON [Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]). Acta Cryst. D65, 148–155]. The formula mass and unit-cell characteristics do not take into account this disordered solvent.

Related literature

For similar structures, see: Gowda et al. (2009[Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.]); Suchetan et al. (2010a[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1039.],b[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o327.],c[Suchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010c). Acta Cryst. E66, o1510.], 2011[Suchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o917.]); Sreenivasa et al. (2013[Sreenivasa, S., Palakshamurthy, B. S., Lohith, T. N., Mohan, N. R., Kumar, V. & Suchetan, P. A. (2013). Acta Cryst. E69, o1263.]). For details of the use of the SQUEEZE routine in PLATON, see: Spek (2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

[Scheme 1]

Experimental

Crystal data
  • C15H15NO4S

  • Mr = 305.34

  • Trigonal, [R \overline 3]

  • a = 27.1686 (16) Å

  • c = 10.8594 (6) Å

  • V = 6941.8 (7) Å3

  • Z = 18

  • Mo Kα radiation

  • μ = 0.22 mm−1

  • T = 293 K

  • 0.32 × 0.27 × 0.19 mm

Data collection
  • Bruker APEXII diffractometer

  • 7701 measured reflections

  • 2106 independent reflections

  • 1604 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 22.9°

Refinement
  • R[F2 > 2σ(F2)] = 0.039

  • wR(F2) = 0.109

  • S = 1.06

  • 2106 reflections

  • 196 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.31 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O3i 0.82 (2) 2.26 (2) 3.038 (3) 160 (3)
N1—H1N⋯O2i 0.82 (2) 2.59 (3) 3.140 (3) 126 (2)
C10—H10⋯O3i 0.93 2.58 3.249 (3) 129
C15—H15A⋯O1ii 0.96 2.56 3.454 (4) 154
Symmetry codes: (i) [-x+y+{\script{1\over 3}}, -x+{\script{5\over 3}}, z-{\script{1\over 3}}]; (ii) [x-y+{\script{2\over 3}}, x+{\script{1\over 3}}, -z+{\script{1\over 3}}].

Data collection: APEX2 (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT-Plus and XPREP (Bruker, 2009[Bruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

As a part of our continued efforts to study the crystal structures of N-(aroyl)-arylsulfonamides (Sreenivasa et al., 2013 and), we report herein on the crystal structure of the title compound.

In the title compound, Fig. 1, the dihedral angle between the benzene rings is 78.62 (16) °. This is similar to the value of 80.3 (1) ° in N-benzoylbenzenesulfonamide (Gowda et al., 2009), 79.4 (1) ° in N-benzoyl-4-methylbenzenesulfonamide (Suchetan et al., 2010a), and 81.0 (1) ° and 76.3 (1) ° in the two independent molecules of N-(4-Chloro-benzoyl)-4-methylbenzenesulfonamide (Suchetan et al., 2010b). Interestingly, in 4-methyl-N-(4-methylbenzoyl)benzenesulfonamide (Suchetan et al., 2010c) the angle is much larger, 89.0 (1) °, similar to the value of 89.8 (1) ° in 4-Methyl-N-(4-nitrobenzoyl)benzenesulfonamide (Suchetan et al., 2011), and 88.9 (1) ° in N-(3-Methoxybenzoyl)-4-methylbenzenesulfonamide (Sreenivasa et al., 2013).

In the crystal, adjacent molecules are linked along the c axis into C(4) chains via N—H···O hydrogen bonds (Table 1 and Fig. 2). Molecules are also connected through C—H···O hydrogen bonds into a hexameric unit generating an R66(66) motif (Table 1 and Fig. 3). Further C—H···O hydrogen bonds connect the molecules along the c axis forming C(5) chains (Table 1 and Fig. 4).

Related literature top

For similar structures, see: Gowda et al. (2009); Suchetan et al. (2010a,b,c, 2011); Sreenivasa et al. (2013). For details of the use of the SQUEEZE routine in PLATON, see: Spek (2009).

Experimental top

The title compound was prepared by refluxing a mixture of 4-methoxybenzoic acid, 4-methylbenzenesulfonamide and phosphorous oxychloride (POCl3) for 2 h on a water bath. The resultant mixture was cooled and poured into ice cold water. The solid obtained was filtered and washed thoroughly with water and then dissolved in sodium bicarbonate solution. The compound was then re-precipitated by acidifying the filtered solution with dilute HCl. The compound obtained was filtered and then dried (M.p. = 393 K). Colourless prism-like crystals of the title compound were obtained by slow evaporation of an water/methanol solution (1:1) at room temperature.

Refinement top

The NH hydrogen atom was located in a difference Fourier map and refined with a distance restraint of N—H = 0.86 (2) Å. The C bound H atoms were positioned with idealized geometry and refined using a riding model: C—H = 0.93–0.96 Å with Ueq = 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atoms. The C7 methyl H atoms were refined with AFIX 127, viz., an idealized disordered methyl group with two positions rotated from each other by 60 °. The crystal did not diffract significantly beyond 22 ° in θ. A region of disordered electron density, probably disordered methanol/water solvent molecules, was treated with the SQUEEZE routine in PLATON (Spek, 2009); more details are given in "_platon_squeeze_details".

Computing details top

Data collection: APEX2 (Bruker, 2009); cell refinement: APEX2 and SAINT-Plus (Bruker, 2009); data reduction: SAINT-Plus and XPREP (Bruker, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A view along the b axis of the crystal packing of the title compound, with hydrogen bonds shown as dashed lines (see Table 1 for details; C bound hydrogen atoms have been omitted for clarity).
[Figure 3] Fig. 3. A view of the hexameric C—H···O hydrogen bonded R66(66) ring motif in the crystal structure of the title compound (see Table 1 for details; H atoms not involved in these hydrogen bonds have been omitted for clarity).
[Figure 4] Fig. 4. A view of the C—H···O hydrogen bonds linking molecules to form C(5) chains in the crystal structure of the title compound (see Table 1 for details; H atoms not involved in these hydrogen bonds have been omitted for clarity).
4-Methoxy-N-[(4-methylphenyl)sulfonyl]benzamide top
Crystal data top
C15H15NO4SDx = 1.315 Mg m3
Mr = 305.34Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 1123 reflections
Hall symbol: -R 3θ = 0.0–22.9°
a = 27.1686 (16) ŵ = 0.22 mm1
c = 10.8594 (6) ÅT = 293 K
V = 6941.8 (7) Å3Prism, colourless
Z = 180.32 × 0.27 × 0.19 mm
F(000) = 2880
Data collection top
Bruker APEXII
diffractometer
1604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.031
Graphite monochromatorθmax = 22.9°, θmin = 1.5°
phi and ω scansh = 2827
7701 measured reflectionsk = 2927
2106 independent reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.050P)2 + 5.9239P]
where P = (Fo2 + 2Fc2)/3
2106 reflections(Δ/σ)max = 0.001
196 parametersΔρmax = 0.17 e Å3
1 restraintΔρmin = 0.31 e Å3
Crystal data top
C15H15NO4SZ = 18
Mr = 305.34Mo Kα radiation
Trigonal, R3µ = 0.22 mm1
a = 27.1686 (16) ÅT = 293 K
c = 10.8594 (6) Å0.32 × 0.27 × 0.19 mm
V = 6941.8 (7) Å3
Data collection top
Bruker APEXII
diffractometer
1604 reflections with I > 2σ(I)
7701 measured reflectionsRint = 0.031
2106 independent reflectionsθmax = 22.9°
Refinement top
R[F2 > 2σ(F2)] = 0.0391 restraint
wR(F2) = 0.109H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.17 e Å3
2106 reflectionsΔρmin = 0.31 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.64344 (3)0.92841 (3)0.07169 (6)0.0512 (3)
O20.67632 (8)0.92727 (8)0.17255 (17)0.0630 (6)
O30.58608 (8)0.93575 (8)0.29224 (17)0.0589 (6)
C90.57569 (10)1.01361 (10)0.2290 (2)0.0408 (6)
N10.61811 (10)0.97065 (10)0.1035 (2)0.0485 (6)
H1N0.6281 (12)0.9968 (9)0.055 (2)0.062 (10)*
O10.66938 (8)0.94701 (8)0.04522 (17)0.0632 (6)
O40.52572 (9)1.13258 (9)0.2828 (2)0.0741 (7)
C80.59338 (10)0.97057 (11)0.2137 (2)0.0432 (7)
C100.57316 (11)1.04599 (11)0.1330 (2)0.0492 (7)
H100.58311.04130.05380.059*
C120.54143 (11)1.09243 (11)0.2710 (3)0.0504 (7)
C140.56081 (11)1.02166 (11)0.3456 (2)0.0506 (7)
H140.56251.00040.41070.061*
C110.55601 (12)1.08497 (12)0.1542 (3)0.0555 (8)
H110.55431.10640.08930.067*
C130.54340 (11)1.06075 (12)0.3676 (3)0.0543 (8)
H130.53321.06550.44650.065*
C10.58283 (12)0.86088 (12)0.0570 (2)0.0506 (7)
C30.53039 (16)0.76272 (14)0.1127 (3)0.0733 (9)
H30.52700.73260.15980.088*
C60.54185 (13)0.85199 (13)0.0290 (3)0.0591 (8)
H60.54580.88170.07840.071*
C20.57735 (14)0.81618 (14)0.1276 (3)0.0640 (9)
H20.60520.82200.18500.077*
C50.49512 (14)0.79869 (14)0.0406 (3)0.0689 (9)
H50.46700.79290.09720.083*
C40.48878 (14)0.75366 (14)0.0291 (3)0.0678 (9)
C150.50425 (16)1.13869 (16)0.3982 (3)0.0871 (11)
H15A0.47151.10320.42060.131*
H15B0.49381.16750.39150.131*
H15C0.53301.14950.46020.131*
C70.43705 (17)0.69489 (15)0.0145 (4)0.1057 (14)
H7A0.41500.69480.05460.159*0.50
H7B0.41430.68510.08780.159*0.50
H7C0.44910.66760.00110.159*0.50
H7D0.43730.67020.07750.159*0.50
H7E0.43800.67990.06490.159*0.50
H7F0.40310.69740.02180.159*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0582 (5)0.0608 (5)0.0468 (5)0.0389 (4)0.0014 (4)0.0045 (3)
O20.0687 (13)0.0786 (14)0.0612 (13)0.0515 (12)0.0164 (10)0.0147 (11)
O30.0789 (14)0.0686 (13)0.0476 (12)0.0506 (11)0.0087 (10)0.0122 (10)
C90.0383 (15)0.0458 (15)0.0404 (15)0.0226 (13)0.0015 (12)0.0007 (12)
N10.0642 (16)0.0548 (15)0.0397 (14)0.0396 (13)0.0062 (12)0.0032 (12)
O10.0702 (13)0.0730 (13)0.0552 (13)0.0423 (11)0.0176 (11)0.0014 (10)
O40.0859 (15)0.0791 (15)0.0861 (17)0.0629 (14)0.0009 (12)0.0053 (12)
C80.0431 (16)0.0488 (17)0.0395 (16)0.0243 (14)0.0013 (13)0.0007 (13)
C100.0507 (17)0.0638 (19)0.0421 (16)0.0353 (15)0.0030 (13)0.0049 (14)
C120.0429 (16)0.0537 (18)0.063 (2)0.0305 (14)0.0057 (14)0.0041 (15)
C140.0595 (18)0.0636 (18)0.0401 (16)0.0394 (16)0.0035 (14)0.0045 (14)
C110.0605 (18)0.068 (2)0.0528 (19)0.0431 (17)0.0042 (14)0.0140 (15)
C130.0551 (18)0.070 (2)0.0477 (17)0.0385 (16)0.0015 (14)0.0099 (15)
C10.0648 (19)0.0591 (18)0.0426 (16)0.0421 (16)0.0018 (14)0.0019 (14)
C30.100 (3)0.059 (2)0.067 (2)0.045 (2)0.007 (2)0.0091 (17)
C60.069 (2)0.062 (2)0.0522 (19)0.0367 (18)0.0046 (16)0.0035 (15)
C20.085 (2)0.073 (2)0.0542 (19)0.054 (2)0.0054 (17)0.0012 (17)
C50.067 (2)0.074 (2)0.064 (2)0.0334 (19)0.0101 (17)0.0020 (18)
C40.075 (2)0.061 (2)0.063 (2)0.0308 (18)0.0086 (18)0.0005 (17)
C150.099 (3)0.102 (3)0.094 (3)0.076 (2)0.005 (2)0.030 (2)
C70.102 (3)0.075 (3)0.107 (3)0.019 (2)0.015 (2)0.003 (2)
Geometric parameters (Å, º) top
S1—O11.4169 (19)C1—C61.379 (4)
S1—O21.4235 (19)C1—C21.380 (4)
S1—N11.643 (2)C3—C41.373 (4)
S1—C11.756 (3)C3—C21.382 (4)
O3—C81.214 (3)C3—H30.9300
C9—C141.380 (3)C6—C51.373 (4)
C9—C101.388 (3)C6—H60.9300
C9—C81.479 (4)C2—H20.9300
N1—C81.372 (3)C5—C41.374 (4)
N1—H1N0.817 (17)C5—H50.9300
O4—C121.362 (3)C4—C71.519 (5)
O4—C151.427 (4)C15—H15A0.9600
C10—C111.373 (4)C15—H15B0.9600
C10—H100.9300C15—H15C0.9600
C12—C111.374 (4)C7—H7A0.9600
C12—C131.375 (4)C7—H7B0.9600
C14—C131.382 (4)C7—H7C0.9600
C14—H140.9300C7—H7D0.9600
C11—H110.9300C7—H7E0.9600
C13—H130.9300C7—H7F0.9600
O1—S1—O2119.45 (13)C5—C6—H6120.4
O1—S1—N1104.29 (12)C1—C6—H6120.4
O2—S1—N1109.86 (11)C1—C2—C3119.8 (3)
O1—S1—C1109.32 (12)C1—C2—H2120.1
O2—S1—C1108.53 (13)C3—C2—H2120.1
N1—S1—C1104.33 (13)C6—C5—C4121.7 (3)
C14—C9—C10118.5 (2)C6—C5—H5119.1
C14—C9—C8117.7 (2)C4—C5—H5119.1
C10—C9—C8123.8 (2)C3—C4—C5118.6 (3)
C8—N1—S1123.9 (2)C3—C4—C7120.2 (3)
C8—N1—H1N121 (2)C5—C4—C7121.1 (3)
S1—N1—H1N113 (2)O4—C15—H15A109.5
C12—O4—C15119.1 (2)O4—C15—H15B109.5
O3—C8—N1120.2 (2)H15A—C15—H15B109.5
O3—C8—C9123.1 (2)O4—C15—H15C109.5
N1—C8—C9116.7 (2)H15A—C15—H15C109.5
C11—C10—C9120.5 (3)H15B—C15—H15C109.5
C11—C10—H10119.8C4—C7—H7A109.5
C9—C10—H10119.8C4—C7—H7B109.5
O4—C12—C11115.7 (3)H7A—C7—H7B109.5
O4—C12—C13123.8 (3)C4—C7—H7C109.5
C11—C12—C13120.5 (2)H7A—C7—H7C109.5
C9—C14—C13121.4 (3)H7B—C7—H7C109.5
C9—C14—H14119.3C4—C7—H7D109.5
C13—C14—H14119.3H7A—C7—H7D141.1
C10—C11—C12120.2 (3)H7B—C7—H7D56.3
C10—C11—H11119.9H7C—C7—H7D56.3
C12—C11—H11119.9C4—C7—H7E109.5
C12—C13—C14119.0 (3)H7A—C7—H7E56.3
C12—C13—H13120.5H7B—C7—H7E141.1
C14—C13—H13120.5H7C—C7—H7E56.3
C6—C1—C2120.0 (3)H7D—C7—H7E109.5
C6—C1—S1119.9 (2)C4—C7—H7F109.5
C2—C1—S1120.1 (2)H7A—C7—H7F56.3
C4—C3—C2120.7 (3)H7B—C7—H7F56.3
C4—C3—H3119.7H7C—C7—H7F141.1
C2—C3—H3119.7H7D—C7—H7F109.5
C5—C6—C1119.1 (3)H7E—C7—H7F109.5
O1—S1—N1—C8174.5 (2)C11—C12—C13—C140.6 (4)
O2—S1—N1—C845.3 (3)C9—C14—C13—C120.5 (4)
C1—S1—N1—C870.9 (2)O1—S1—C1—C652.8 (2)
S1—N1—C8—O34.4 (4)O2—S1—C1—C6175.4 (2)
S1—N1—C8—C9176.81 (18)N1—S1—C1—C658.3 (2)
C14—C9—C8—O313.2 (4)O1—S1—C1—C2124.4 (2)
C10—C9—C8—O3166.6 (3)O2—S1—C1—C27.4 (3)
C14—C9—C8—N1168.0 (2)N1—S1—C1—C2124.5 (2)
C10—C9—C8—N112.1 (4)C2—C1—C6—C51.8 (4)
C14—C9—C10—C110.2 (4)S1—C1—C6—C5179.0 (2)
C8—C9—C10—C11179.7 (2)C6—C1—C2—C30.7 (4)
C15—O4—C12—C11173.4 (3)S1—C1—C2—C3177.9 (2)
C15—O4—C12—C136.9 (4)C4—C3—C2—C10.6 (5)
C10—C9—C14—C130.3 (4)C1—C6—C5—C41.6 (5)
C8—C9—C14—C13179.5 (2)C2—C3—C4—C50.8 (5)
C9—C10—C11—C120.3 (4)C2—C3—C4—C7179.3 (3)
O4—C12—C11—C10179.2 (2)C6—C5—C4—C30.3 (5)
C13—C12—C11—C100.5 (4)C6—C5—C4—C7179.6 (3)
O4—C12—C13—C14179.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.82 (2)2.26 (2)3.038 (3)160 (3)
N1—H1N···O2i0.82 (2)2.59 (3)3.140 (3)126 (2)
C10—H10···O3i0.932.583.249 (3)129
C15—H15A···O1ii0.962.563.454 (4)154
Symmetry codes: (i) x+y+1/3, x+5/3, z1/3; (ii) xy+2/3, x+1/3, z+1/3.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.817 (17)2.257 (19)3.038 (3)160 (3)
N1—H1N···O2i0.817 (17)2.59 (3)3.140 (3)126 (2)
C10—H10···O3i0.932.583.249 (3)129
C15—H15A···O1ii0.962.563.454 (4)154
Symmetry codes: (i) x+y+1/3, x+5/3, z1/3; (ii) xy+2/3, x+1/3, z+1/3.
 

Acknowledgements

PAS thanks the University Grants Commission (UGC), India, for financial support under its Minor Research Project scheme. JT thanks the Department of Science and Technology (DST), New Delhi, for the SCXRD facility under the PURSE Grant (SR/S9/Z-23/2008/11, 2009) at USIC, Karnatak University.

References

First citationBruker (2009). APEX2, SAINT-Plus and XPREP. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationGowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2009). Acta Cryst. E65, o2516.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSreenivasa, S., Palakshamurthy, B. S., Lohith, T. N., Mohan, N. R., Kumar, V. & Suchetan, P. A. (2013). Acta Cryst. E69, o1263.  CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Foro, S. & Gowda, B. T. (2011). Acta Cryst. E67, o917.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010a). Acta Cryst. E66, o1039.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010b). Acta Cryst. E66, o327.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationSuchetan, P. A., Gowda, B. T., Foro, S. & Fuess, H. (2010c). Acta Cryst. E66, o1510.  Web of Science CSD CrossRef IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 11| November 2013| Pages o1664-o1665
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds