[Journal logo]

Volume 69 
Part 11 
Page o1615  
November 2013  

Received 30 September 2013
Accepted 1 October 2013
Online 5 October 2013

Key indicators
Single-crystal X-ray study
T = 98 K
Mean [sigma](C-C) = 0.003 Å
R = 0.044
wR = 0.115
Data-to-parameter ratio = 16.5
Details
Open access

4-Amino-N-(4,6-di­methyl­pyrimidin-2-yl)benzene­sulfonamide-1,4-di­aza­bicyclo­[2.2.2]octane (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
Correspondence e-mail: edward.tiekink@gmail.com

The asymmetric unit of the title co-crystal, C12H14N4O2S·0.5C6H12N2, comprises the sulfonamide mol­ecule and half a mol­ecule of 1,4-di­aza­bicyclo­[2.2.2]octane (DABCO), the latter being disposed about a crystallographic twofold rotation axis. In the sulfonamide mol­ecule, the aromatic rings are almost perpendicular to one another [dihedral angle = 75.01 (8)°]. In the crystal, mol­ecules are connected into a three-mol­ecule aggregate via amide-DABCO N-H...N hydrogen bonds, and these are connected into a three-dimensional architecture via amino-DABCO N-H...O and amino-pyrimidine N-H...N hydrogen bonds.

Related literature

For the structure of the sulfonamide, see: Tiwari et al. (1984[Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.]). For related studies of co-crystal formation, see: Ellis et al. (2009[Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.]); Arman & Tiekink (2013[Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289-294.]). For co-crystals of the sulfonamide with carb­oxy­lic acids, see: Arman et al. (2010[Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430.]); Ghosh et al. (2011[Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.]); Smith & Wermuth (2013[Smith, G. & Wermuth, U. D. (2013). Acta Cryst. E69, o234.]).

[Scheme 1]

Experimental

Crystal data
  • C12H14N4O2S·0.5C6H12N2

  • Mr = 334.42

  • Orthorhombic, P b c n

  • a = 26.488 (3) Å

  • b = 9.7886 (11) Å

  • c = 12.2163 (13) Å

  • V = 3167.4 (6) Å3

  • Z = 8

  • Mo K[alpha] radiation

  • [mu] = 0.22 mm-1

  • T = 98 K

  • 0.35 × 0.31 × 0.21 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • 7965 measured reflections

  • 3616 independent reflections

  • 3264 reflections with I > 2[sigma](I)

  • Rint = 0.032

Refinement
  • R[F2 > 2[sigma](F2)] = 0.044

  • wR(F2) = 0.115

  • S = 0.99

  • 3616 reflections

  • 219 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.41 e Å-3

  • [Delta][rho]min = -0.48 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N1-H1N...N5i 0.88 (2) 1.90 (2) 2.768 (2) 169 (2)
N4-H2N...O2ii 0.88 (1) 2.48 (2) 3.058 (2) 124 (2)
N4-H2N...N2ii 0.88 (1) 2.59 (2) 3.376 (2) 149 (2)
N4-H3N...O1iii 0.88 (2) 2.15 (2) 3.032 (2) 178 (2)
Symmetry codes: (i) [x, -y+1, z+{\script{1\over 2}}]; (ii) [-x+{\script{1\over 2}}, -y+{\script{1\over 2}}, z+{\script{1\over 2}}]; (iii) [-x+{\script{1\over 2}}, y+{\script{1\over 2}}, z].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: Crystal­Clear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2652 ).


Acknowledgements

We are grateful to the Ministry of Higher Education (Malaysia) and the University of Malaya (UM) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/03).

References

Arman, H. D., Kaulgud, T. & Tiekink, E. R. T. (2010). Acta Cryst. E66, o2430.  [CSD] [CrossRef] [IUCr Journals]
Arman, H. D. & Tiekink, E. R. T. (2013). Z. Kristallogr. Cryst. Mat. 228, 289-294.  [CSD] [CrossRef] [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Ellis, C. A., Miller, M. A., Spencer, J., Zukerman-Schpector, J. & Tiekink, E. R. T. (2009). CrystEngComm, 11, 1352-1361.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Ghosh, S., Bag, P. P. & Reddy, C. M. (2011). Cryst. Growth Des. 11, 3489-3503.  [CSD] [CrossRef] [ChemPort]
Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Smith, G. & Wermuth, U. D. (2013). Acta Cryst. E69, o234.  [CSD] [CrossRef] [IUCr Journals]
Tiwari, R. K., Haridas, M. & Singh, T. P. (1984). Acta Cryst. C40, 655-657.  [CSD] [CrossRef] [IUCr Journals]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1615  [ doi:10.1107/S1600536813027037 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.