organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Propyl 2-(1H-indol-3-yl)acetate

aDepartment of Chemical Engineering, Taizhou Institute of Science and Technology, NJUST, Meilan Dong Road No. 8 Taizhou, Taizhou 225300, People's Republic of China
*Correspondence e-mail: tgm333@126.com

(Received 2 October 2013; accepted 9 October 2013; online 23 October 2013)

In the title compound, C13H15NO2, the acetate group [C—C(=O)—O] makes a dihedral angle of 62.35 (13)° with the mean plane of the indole ring system [maximum deviation = 0.011 (3) Å]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming helical chains propagating along [010].

Related literature

For the use of the title compound as a starting material for the synthesis of platinum complexes with anti­tumor activity, see: Kim et al. (1994[Kim, D.-K., Kim, G., Gam, J., Cho, Y.-B., Kim, H.-T., Tai, J.-H., Kim, K. H., Hong, W.-S. & Park, J.-G. (1994). J. Med. Chem. 37, 1471-1485.]). For its use as an inter­mediate in organic synthesis, see: Pandey et al. (1997[Pandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966-5973.]). For the synthesis of indole-3-acetic acid, see: Johnson & Donald (1973[Johnson, H. E. & Donald, G. C. (1973). Org. Synth. 5, 654-656.]). For standard bond-length data, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C13H15NO2

  • Mr = 217.26

  • Monoclinic, P 21 /c

  • a = 7.8230 (16) Å

  • b = 8.1740 (16) Å

  • c = 18.994 (4) Å

  • β = 97.18 (3)°

  • V = 1205.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.10 mm

Data collection
  • Enraf–Nonius CAD-4 diffractometer

  • Absorption correction: ψ scan (North et al., 1968[North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.]) Tmin = 0.976, Tmax = 0.992

  • 2387 measured reflections

  • 2210 independent reflections

  • 1463 reflections with I > 2σ(I)

  • Rint = 0.083

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement
  • R[F2 > 2σ(F2)] = 0.063

  • wR(F2) = 0.183

  • S = 1.00

  • 2210 reflections

  • 145 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.30 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1N⋯O2i 0.86 2.13 2.953 (3) 160
Symmetry code: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: CAD-4 Software (Enraf–Nonius, 1989[Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.]); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995[Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

Indole derivatives are some of the most effective anticancer agents currently available. The title compound is a starting material for the synthesis of platinum complexes with antitumor activity (Kim et al., 1994) and is also an important intermediate in organic synthesis (Pandey et al., 1997). As part of our studies of the synthesis and characterization of such compounds, we herein report on the crystal structure of the title compound.

The molecular structure of the title compound is shown in Fig. 1. The bond lengths (Allen et al., 1987) and angles are within normal ranges. The acetate group [C5-C4(O2)-O1] makes a dihedral angle of 62.35 (13) ° with the mean plane of the indole ring system [N1/C6-C13; maximum deviation = 0.011 (3) Å for atom C9].

In the crystal, molecules are linked by N—H···O hydrogen bonds forming helical chains propagating along the b axis direction (Table 1 and Fig 2).

Related literature top

For the use of the title compound as a starting material for the synthesis of platinum complexes with antitumor activity, see: Kim et al. (1994). For its use as an intermediate in organic synthesis, see: Pandey et al. (1997). For the synthesis of indole-3-acetic acid, see: Johnson & Donald (1973). For standard bond-length data, see: Allen et al. (1987).

Experimental top

Indole-3-acetic acid was synthesized following a literature procedure (Johnson & Donald, 1973). The title compound was synthesized by adding indole-3-acetic acid (10 g, 0.057 mol) and 100 mL of dichloromethane to a three-neck flask with stirring and cooled in an ice bath. 4.3 mL of thionyl chloride was added drop wise, after the solution was stirred for a further 10 min. 15 mL of 1-propanol was then added and the reaction was followed using TLC until completion. The title compound was obtained as a light yellow solid [Yield = 10.5 g, 0.048 mol]. Recrystallization with ethanol gave yellow block-like crystals, suitable for X-ray diffraction analysis.

Refinement top

H atoms were positioned geometrically (N-H = 0.86 Å, C—H = 0.93, 0.97 and 0.96 Å for CH, CH2 and CH3 H atoms, respectively) and refined as riding atoms with Uiso(H) = 1.5Ueq(C-methyl) and = 1.2Ueq(N,C) for other H atoms.

Computing details top

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with atom labelling. The displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. A view along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1 for details).
Propyl 2-(1H-indol-3-yl)acetate top
Crystal data top
C13H15NO2F(000) = 464
Mr = 217.26Dx = 1.198 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 7.8230 (16) Åθ = 10–13°
b = 8.1740 (16) ŵ = 0.08 mm1
c = 18.994 (4) ÅT = 293 K
β = 97.18 (3)°Block, yellow
V = 1205.1 (4) Å30.30 × 0.20 × 0.10 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
1463 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 25.4°, θmin = 2.2°
ω/2θ scansh = 09
Absorption correction: ψ scan
(North et al., 1968)
k = 09
Tmin = 0.976, Tmax = 0.992l = 2222
2387 measured reflections3 standard reflections every 200 reflections
2210 independent reflections intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.183H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.1P)2 + 0.3P]
where P = (Fo2 + 2Fc2)/3
2210 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C13H15NO2V = 1205.1 (4) Å3
Mr = 217.26Z = 4
Monoclinic, P21/cMo Kα radiation
a = 7.8230 (16) ŵ = 0.08 mm1
b = 8.1740 (16) ÅT = 293 K
c = 18.994 (4) Å0.30 × 0.20 × 0.10 mm
β = 97.18 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
1463 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.083
Tmin = 0.976, Tmax = 0.9923 standard reflections every 200 reflections
2387 measured reflections intensity decay: 1%
2210 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.183H-atom parameters constrained
S = 1.00Δρmax = 0.22 e Å3
2210 reflectionsΔρmin = 0.30 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4476 (3)0.5291 (3)0.76568 (11)0.0551 (6)
H1N0.45310.57270.80710.066*
O10.6827 (3)0.2944 (2)0.50091 (9)0.0572 (6)
C10.9681 (5)0.2675 (5)0.4162 (2)0.0913 (12)
H1A1.01200.29820.37310.137*
H1B1.04550.19090.44180.137*
H1C0.95820.36300.44480.137*
O20.6241 (3)0.1504 (2)0.59452 (9)0.0580 (6)
C20.7950 (5)0.1904 (4)0.39885 (15)0.0677 (9)
H2A0.80700.09290.37070.081*
H2B0.72050.26580.37000.081*
C30.7106 (5)0.1444 (4)0.46239 (16)0.0684 (9)
H3A0.60150.09040.44780.082*
H3B0.78380.07020.49250.082*
C40.6405 (3)0.2803 (3)0.56652 (12)0.0417 (6)
C50.6233 (3)0.4467 (3)0.59888 (13)0.0462 (6)
H5A0.73790.48970.61320.055*
H5B0.56720.51890.56260.055*
C60.5254 (3)0.4523 (3)0.66121 (12)0.0408 (6)
C70.5740 (3)0.5333 (3)0.72294 (13)0.0493 (7)
H7A0.67990.58470.73440.059*
C80.3090 (3)0.4439 (3)0.73219 (13)0.0461 (6)
C90.1503 (4)0.4081 (4)0.75382 (17)0.0608 (8)
H9A0.12220.44470.79730.073*
C100.0360 (4)0.3173 (4)0.7092 (2)0.0685 (9)
H10A0.07070.29010.72280.082*
C110.0784 (4)0.2654 (4)0.64391 (18)0.0637 (8)
H11A0.00110.20380.61450.076*
C120.2337 (3)0.3022 (3)0.62148 (15)0.0516 (7)
H12A0.25900.26690.57740.062*
C130.3536 (3)0.3938 (3)0.66602 (12)0.0401 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0693 (15)0.0572 (14)0.0401 (11)0.0058 (12)0.0115 (11)0.0130 (11)
O10.0821 (14)0.0501 (11)0.0442 (10)0.0020 (9)0.0262 (10)0.0014 (8)
C10.091 (3)0.092 (3)0.099 (3)0.007 (2)0.044 (2)0.015 (2)
O20.0766 (14)0.0506 (11)0.0497 (11)0.0029 (10)0.0196 (10)0.0071 (9)
C20.098 (3)0.0577 (19)0.0503 (17)0.0110 (17)0.0201 (17)0.0075 (14)
C30.093 (2)0.0551 (18)0.0615 (18)0.0074 (16)0.0259 (17)0.0124 (15)
C40.0379 (13)0.0513 (15)0.0365 (12)0.0005 (11)0.0068 (10)0.0026 (11)
C50.0498 (14)0.0459 (14)0.0435 (14)0.0043 (12)0.0084 (12)0.0024 (11)
C60.0408 (13)0.0426 (13)0.0385 (12)0.0022 (11)0.0028 (10)0.0013 (10)
C70.0488 (14)0.0527 (16)0.0461 (14)0.0088 (12)0.0048 (12)0.0076 (12)
C80.0525 (15)0.0414 (14)0.0464 (14)0.0074 (11)0.0139 (12)0.0012 (11)
C90.0635 (18)0.0532 (17)0.072 (2)0.0104 (15)0.0338 (16)0.0031 (15)
C100.0427 (16)0.0605 (19)0.105 (3)0.0053 (14)0.0206 (17)0.0063 (18)
C110.0389 (15)0.0631 (19)0.086 (2)0.0008 (13)0.0035 (14)0.0015 (16)
C120.0414 (14)0.0563 (17)0.0553 (15)0.0044 (12)0.0010 (12)0.0069 (13)
C130.0388 (13)0.0414 (13)0.0390 (13)0.0027 (10)0.0012 (10)0.0004 (11)
Geometric parameters (Å, º) top
N1—C71.356 (3)C5—C61.489 (3)
N1—C81.375 (3)C5—H5A0.9700
N1—H1N0.8600C5—H5B0.9700
O1—C41.333 (3)C6—C71.359 (3)
O1—C31.458 (3)C6—C131.440 (3)
C1—C21.493 (5)C7—H7A0.9300
C1—H1A0.9600C8—C91.387 (4)
C1—H1B0.9600C8—C131.407 (3)
C1—H1C0.9600C9—C101.371 (4)
O2—C41.201 (3)C9—H9A0.9300
C2—C31.495 (4)C10—C111.390 (5)
C2—H2A0.9700C10—H10A0.9300
C2—H2B0.9700C11—C121.370 (4)
C3—H3A0.9700C11—H11A0.9300
C3—H3B0.9700C12—C131.399 (4)
C4—C51.506 (4)C12—H12A0.9300
C7—N1—C8109.1 (2)C6—C5—H5B108.4
C7—N1—H1N125.4C4—C5—H5B108.4
C8—N1—H1N125.4H5A—C5—H5B107.4
C4—O1—C3117.8 (2)C7—C6—C13105.7 (2)
C2—C1—H1A109.5C7—C6—C5125.8 (2)
C2—C1—H1B109.5C13—C6—C5128.1 (2)
H1A—C1—H1B109.5N1—C7—C6110.9 (2)
C2—C1—H1C109.5N1—C7—H7A124.5
H1A—C1—H1C109.5C6—C7—H7A124.5
H1B—C1—H1C109.5N1—C8—C9130.8 (3)
C1—C2—C3114.1 (3)N1—C8—C13107.0 (2)
C1—C2—H2A108.7C9—C8—C13122.3 (3)
C3—C2—H2A108.7C10—C9—C8118.1 (3)
C1—C2—H2B108.7C10—C9—H9A121.0
C3—C2—H2B108.7C8—C9—H9A121.0
H2A—C2—H2B107.6C9—C10—C11120.4 (3)
O1—C3—C2107.6 (2)C9—C10—H10A119.8
O1—C3—H3A110.2C11—C10—H10A119.8
C2—C3—H3A110.2C12—C11—C10122.0 (3)
O1—C3—H3B110.2C12—C11—H11A119.0
C2—C3—H3B110.2C10—C11—H11A119.0
H3A—C3—H3B108.5C11—C12—C13118.9 (3)
O2—C4—O1122.9 (2)C11—C12—H12A120.6
O2—C4—C5126.7 (2)C13—C12—H12A120.6
O1—C4—C5110.4 (2)C12—C13—C8118.3 (2)
C6—C5—C4115.7 (2)C12—C13—C6134.4 (2)
C6—C5—H5A108.4C8—C13—C6107.3 (2)
C4—C5—H5A108.4
C4—O1—C3—C2166.9 (2)C13—C8—C9—C101.6 (4)
C1—C2—C3—O162.5 (4)C8—C9—C10—C111.0 (4)
C3—O1—C4—O20.4 (4)C9—C10—C11—C120.0 (5)
C3—O1—C4—C5177.9 (2)C10—C11—C12—C130.5 (4)
O2—C4—C5—C620.2 (4)C11—C12—C13—C80.1 (4)
O1—C4—C5—C6161.6 (2)C11—C12—C13—C6179.0 (3)
C4—C5—C6—C7134.1 (3)N1—C8—C13—C12179.3 (2)
C4—C5—C6—C1354.7 (3)C9—C8—C13—C121.2 (4)
C8—N1—C7—C60.3 (3)N1—C8—C13—C60.1 (3)
C13—C6—C7—N10.3 (3)C9—C8—C13—C6179.6 (2)
C5—C6—C7—N1173.2 (2)C7—C6—C13—C12179.3 (3)
C7—N1—C8—C9179.4 (3)C5—C6—C13—C128.2 (5)
C7—N1—C8—C130.1 (3)C7—C6—C13—C80.3 (3)
N1—C8—C9—C10179.0 (3)C5—C6—C13—C8172.9 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.132.953 (3)160
Symmetry code: (i) x+1, y+1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.862.132.953 (3)160
Symmetry code: (i) x+1, y+1/2, z+3/2.
 

Acknowledgements

The authors thank Liu Bo Nian from Nanjing University of Technology for useful discussions and the Center of Testing and Analysis, Nanjing University, for measuring the X-ray diffraction data.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationEnraf–Nonius (1989). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.  Google Scholar
First citationHarms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.  Google Scholar
First citationJohnson, H. E. & Donald, G. C. (1973). Org. Synth. 5, 654–656.  Google Scholar
First citationKim, D.-K., Kim, G., Gam, J., Cho, Y.-B., Kim, H.-T., Tai, J.-H., Kim, K. H., Hong, W.-S. & Park, J.-G. (1994). J. Med. Chem. 37, 1471–1485.  CrossRef CAS PubMed Web of Science Google Scholar
First citationNorth, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.  CrossRef IUCr Journals Web of Science Google Scholar
First citationPandey, G., Hajra, S., Ghorai, M. K. & Kumar, K. R. (1997). J. Org. Chem. 62, 5966–5973.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds