organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Pyrrolidinium-2-carboxyl­ate–4-nitro­phenol (1/2)

aSri Venkateswara College of Engineering, Pennalur, Irungattukottai 602 117, Sriperumbudur Taluk, Tamilnadu, India, bDepartment of Physics, Anna University, Adyar, Chennai 600 025, Tamilnadu, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
*Correspondence e-mail: shirai2011@gmail.com

(Received 9 October 2013; accepted 19 October 2013; online 31 October 2013)

In the title compound, C5H9NO2·2C6H5NO3, the pyrrolidine ring of the pyrrolidinium-2-carboxyl­ate zwitterion adopts a twisted conformation on the –CH2—CH2– bond adjacent to the N atom. The mean plane of this pyrrolidine ring forms dihedral angles of 25.3 (3) and 32.1 (3)° with the two nitro­phenol rings. An intra­molecular N—H⋯O hydrogen bond occurs in the pyrrolidinium-2-carboxyl­ate mol­ecule. In the crystal, mol­ecules are linked via O—H⋯O and N—H⋯O hydrogen bonds, enclosing R32(8) ring motifs, forming chains running parallel to the a axis. These chains are further cross-linked by O—H⋯O and C—H⋯O hydrogen bonds, forming undulating two-dimensional networks lying parallel to (001).

Related literature

For the use of nitro-aromatics as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]). For the occurrence of nitro-aromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]); Soojhawon et al. (2005[Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527-533.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9NO2·2C6H5NO3

  • Mr = 393.35

  • Orthorhombic, P 21 21 21

  • a = 5.9045 (3) Å

  • b = 15.6099 (7) Å

  • c = 20.0424 (9) Å

  • V = 1847.28 (15) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.35 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.972

  • 17765 measured reflections

  • 3572 independent reflections

  • 2987 reflections with I > 2σ(I)

  • Rint = 0.029

Refinement
  • R[F2 > 2σ(F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.06

  • 3572 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.23 e Å−3

  • Δρmin = −0.15 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3A⋯O8 0.94 (6) 2.03 (6) 2.606 (6) 118 (5)
N3—H3B⋯O7i 0.93 (5) 1.87 (6) 2.766 (6) 160 (7)
O3—H3C⋯O7i 0.82 1.92 2.656 (5) 148
O6—H6A⋯O8ii 0.82 1.82 2.604 (5) 159
C11—H11⋯O1i 0.93 2.59 3.503 (8) 169
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).

Supporting information


Comment top

Nitro-aromatics are widely used either as materials or as intermediates in explosives, dyestuffs, pesticides and organic synthesis (Yan et al., 2006). They also occur as industrial wastes and direct pollutants in the environment. They are relatively soluble in water and detectable in rivers, ponds and soil (Yan et al., 2006; Soojhawon et al., 2005).

The title compound was synthesized by mixing eqimolar amounts of pyrrolidine carboxylic acid and para-nitrophenol in water. The crystals obtained were found to be composed of one molecule of pyrrolidinium-2-carboxylate, in the zwitterion form, and two molecules of para-nitrophenol, Fig. 1. The pyrrolidine ring (N3/C14-C17) adopts a twisted conformation on bond C17-C15, with puckering parameters (Cremer & Pople, 1975) q2 = 0.373 (7) Å and ϕ2 = 312.3 (11)°. The hydroxy group O atoms, O3 and O6, deviate slightly by -0.0380 (3) and 0.0160 (5) Å, respectively, from the mean planes of the benzene rings to which they are attached, (C1–C6) and (C7–C12).

The mean plane of the pyrrolidine ring (N3/C14-C17) forms dihedral angles of 25.3 (3)° and 32.1 (3)° with the nitro-phenol rings (C1-C6) and (C7-C12), respectively.

In the crystal, molecules are linked via O—H···O and N—H···O intra- and inter-molecular hydrogen bonds (Table 1 and Fig. 2), with R32(8) ring motifs, forming chains running parallel to the a axis. These chains are further cross-linked by O—H···O and C—H···O hydrogen bond forming undulating two-dimensional networks lying parallel to the ab plane (Table 1 and Fig. 2).

Related literature top

For the use of nitro-aromatics as intermediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006). For the occurrence of nitro-aromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006); Soojhawon et al. (2005). For ring puckering analysis, see: Cremer & Pople (1975).

Experimental top

An equimolar (1:1:1) ratio of pyrrolidine carboxylic acid and para-nitrophenol were added to distilled water as solvent and the mixture stirred for 1 h, giving a clear solution. The solution was filtered into a clean beaker and sealed with parafilm and kept at room temperature for three days, after which block-like colourless crystals suitable for X-ray diffraction analysis were obtained.

Refinement top

The NH H-atoms were located in difference electron-density maps and refined with distance restraints: N-H = 0.92 (2) Å. The OH and C-bound H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.82 Å, C-H = 0.93, 0.97 and 0.98 Å for CH(aromatic), CH2, and CH(methine) H-atoms, respectively, with Uiso(H) = 1.5Ueq(C-methyl and O), and = 1.2Ueq(C) for other H-atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 1490 Friedel pairs were merged and Δf '' set to zero.

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The crystal packing of the title compound viewed along the c axis. The hydrogen bonds are shown as dashed lines (see Table 1 for details; H atoms not involved in hydrogen bonding have been excluded for clarity).
Pyrrolidinium-2-carboxylate–4-nitrophenol (1/2) top
Crystal data top
C5H9NO2·2C6H5NO3F(000) = 824
Mr = 393.35Dx = 1.414 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3572 reflections
a = 5.9045 (3) Åθ = 2.4–25.9°
b = 15.6099 (7) ŵ = 0.11 mm1
c = 20.0424 (9) ÅT = 293 K
V = 1847.28 (15) Å3Block, colourless
Z = 40.35 × 0.25 × 0.25 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3572 independent reflections
Radiation source: fine-focus sealed tube2987 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω and ϕ scansθmax = 25.9°, θmin = 2.4°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 77
Tmin = 0.961, Tmax = 0.972k = 1719
17765 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0434P)2 + 0.2454P]
where P = (Fo2 + 2Fc2)/3
3572 reflections(Δ/σ)max < 0.001
261 parametersΔρmax = 0.23 e Å3
2 restraintsΔρmin = 0.15 e Å3
Crystal data top
C5H9NO2·2C6H5NO3V = 1847.28 (15) Å3
Mr = 393.35Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.9045 (3) ŵ = 0.11 mm1
b = 15.6099 (7) ÅT = 293 K
c = 20.0424 (9) Å0.35 × 0.25 × 0.25 mm
Data collection top
Bruker SMART APEXII area-detector
diffractometer
3572 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2987 reflections with I > 2σ(I)
Tmin = 0.961, Tmax = 0.972Rint = 0.029
17765 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0372 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.23 e Å3
3572 reflectionsΔρmin = 0.15 e Å3
261 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7666 (9)0.5876 (3)0.5668 (3)0.0468 (13)
C20.6897 (10)0.5897 (3)0.6313 (3)0.0502 (13)
H20.76730.56100.66490.060*
C30.4946 (9)0.6351 (3)0.6455 (2)0.0469 (12)
H30.43800.63620.68870.056*
C40.3835 (9)0.6789 (3)0.5951 (2)0.0455 (12)
C50.4649 (11)0.6750 (4)0.5306 (3)0.0556 (15)
H50.38920.70390.49670.067*
C60.6561 (11)0.6291 (4)0.5163 (3)0.0552 (14)
H60.71030.62620.47280.066*
C70.7088 (10)0.3784 (3)0.4091 (3)0.0491 (13)
C80.8784 (10)0.3384 (4)0.4433 (3)0.0518 (14)
H81.00420.31750.42070.062*
C90.8621 (9)0.3292 (3)0.5114 (3)0.0474 (12)
H90.97780.30280.53520.057*
C100.6715 (8)0.3596 (3)0.5440 (2)0.0404 (11)
C110.5015 (10)0.3997 (4)0.5088 (3)0.0508 (13)
H110.37440.42020.53110.061*
C120.5193 (11)0.4094 (4)0.4411 (3)0.0549 (14)
H120.40510.43640.41710.066*
C131.0014 (8)0.7956 (3)0.7647 (2)0.0421 (12)
C140.7877 (8)0.8049 (3)0.7237 (2)0.0401 (12)
H140.74640.74890.70540.048*
C150.5588 (13)0.9273 (4)0.7485 (4)0.0726 (19)
H15A0.66200.96540.77180.087*
H15B0.40420.94420.75830.087*
C160.8030 (11)0.8693 (5)0.6673 (3)0.0729 (19)
H16A0.94320.90140.67020.087*
H16B0.79770.84040.62450.087*
C170.6028 (15)0.9278 (5)0.6752 (4)0.094 (3)
H17A0.63790.98510.65960.113*
H17B0.47290.90630.65070.113*
N10.9739 (9)0.5403 (3)0.5517 (3)0.0627 (13)
N20.7296 (12)0.3891 (4)0.3376 (3)0.0710 (16)
N30.5998 (7)0.8362 (3)0.7673 (2)0.0465 (11)
O11.0691 (9)0.5029 (3)0.5975 (3)0.0833 (15)
O21.0428 (9)0.5400 (3)0.4942 (3)0.0866 (15)
O30.1964 (7)0.7261 (3)0.60652 (19)0.0642 (12)
H3C0.16320.72340.64620.096*
O40.8932 (11)0.3577 (4)0.3096 (2)0.0953 (18)
O50.5857 (13)0.4289 (4)0.3074 (3)0.119 (2)
O60.6447 (6)0.3513 (3)0.61037 (16)0.0571 (10)
H6A0.75480.32650.62620.086*
O71.1759 (6)0.7746 (3)0.73339 (18)0.0570 (10)
O80.9884 (7)0.8096 (3)0.82530 (17)0.0648 (12)
H3A0.653 (11)0.832 (4)0.811 (3)0.064 (17)*
H3B0.470 (11)0.804 (5)0.760 (4)0.10 (3)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (3)0.038 (3)0.057 (3)0.005 (2)0.004 (2)0.007 (3)
C20.050 (3)0.046 (3)0.055 (3)0.004 (3)0.008 (3)0.004 (3)
C30.048 (3)0.053 (3)0.039 (3)0.003 (3)0.002 (2)0.001 (2)
C40.043 (3)0.050 (3)0.044 (3)0.002 (2)0.001 (2)0.003 (2)
C50.064 (4)0.064 (4)0.039 (3)0.009 (3)0.001 (3)0.001 (3)
C60.063 (4)0.057 (3)0.045 (3)0.001 (3)0.010 (3)0.006 (3)
C70.067 (4)0.046 (3)0.034 (3)0.007 (3)0.001 (2)0.002 (2)
C80.051 (3)0.055 (3)0.049 (3)0.002 (3)0.014 (3)0.008 (3)
C90.040 (3)0.054 (3)0.047 (3)0.006 (2)0.002 (2)0.003 (3)
C100.037 (3)0.049 (3)0.036 (2)0.004 (2)0.000 (2)0.004 (2)
C110.043 (3)0.061 (3)0.049 (3)0.009 (3)0.003 (2)0.001 (3)
C120.056 (4)0.057 (3)0.051 (3)0.008 (3)0.013 (3)0.006 (3)
C130.031 (2)0.055 (3)0.040 (3)0.002 (2)0.003 (2)0.005 (2)
C140.028 (2)0.057 (3)0.035 (2)0.001 (2)0.0025 (19)0.005 (2)
C150.066 (4)0.064 (4)0.087 (5)0.013 (3)0.014 (4)0.005 (4)
C160.058 (4)0.104 (5)0.057 (4)0.017 (4)0.015 (3)0.022 (4)
C170.076 (5)0.103 (6)0.104 (6)0.025 (4)0.020 (4)0.046 (5)
N10.051 (3)0.049 (3)0.088 (4)0.005 (2)0.006 (3)0.012 (3)
N20.103 (5)0.067 (4)0.042 (3)0.013 (3)0.004 (3)0.001 (3)
N30.030 (2)0.068 (3)0.041 (2)0.004 (2)0.0055 (18)0.002 (2)
O10.065 (3)0.075 (3)0.110 (4)0.019 (2)0.008 (3)0.001 (3)
O20.074 (3)0.092 (3)0.094 (4)0.011 (3)0.028 (3)0.012 (3)
O30.055 (2)0.089 (3)0.048 (2)0.022 (2)0.0020 (19)0.000 (2)
O40.135 (5)0.101 (4)0.050 (3)0.013 (4)0.030 (3)0.009 (3)
O50.158 (6)0.145 (6)0.052 (3)0.023 (5)0.014 (4)0.028 (3)
O60.042 (2)0.092 (3)0.0365 (19)0.003 (2)0.0030 (16)0.0015 (19)
O70.0301 (18)0.089 (3)0.052 (2)0.0065 (19)0.0028 (16)0.010 (2)
O80.042 (2)0.113 (4)0.039 (2)0.005 (2)0.0036 (17)0.015 (2)
Geometric parameters (Å, º) top
C1—C61.368 (8)C13—O81.237 (6)
C1—C21.369 (8)C13—O71.250 (6)
C1—N11.461 (8)C13—C141.512 (7)
C2—C31.382 (8)C14—N31.493 (6)
C2—H20.9300C14—C161.514 (8)
C3—C41.385 (7)C14—H140.9800
C3—H30.9300C15—N31.491 (8)
C4—O31.347 (6)C15—C171.493 (11)
C4—C51.380 (7)C15—H15A0.9700
C5—C61.367 (8)C15—H15B0.9700
C5—H50.9300C16—C171.502 (10)
C6—H60.9300C16—H16A0.9700
C7—C81.364 (8)C16—H16B0.9700
C7—C121.377 (8)C17—H17A0.9700
C7—N21.449 (7)C17—H17B0.9700
C8—C91.375 (7)N1—O21.223 (7)
C8—H80.9300N1—O11.225 (7)
C9—C101.385 (7)N2—O51.213 (8)
C9—H90.9300N2—O41.219 (8)
C10—O61.347 (6)N3—H3A0.94 (6)
C10—C111.377 (7)N3—H3B0.93 (5)
C11—C121.370 (7)O3—H3C0.8200
C11—H110.9300O6—H6A0.8200
C12—H120.9300
C6—C1—C2121.9 (5)N3—C14—C13109.5 (4)
C6—C1—N1119.0 (5)N3—C14—C16105.3 (4)
C2—C1—N1119.0 (5)C13—C14—C16114.8 (5)
C1—C2—C3118.8 (5)N3—C14—H14109.0
C1—C2—H2120.6C13—C14—H14109.0
C3—C2—H2120.6C16—C14—H14109.0
C2—C3—C4119.9 (5)N3—C15—C17102.9 (5)
C2—C3—H3120.1N3—C15—H15A111.2
C4—C3—H3120.1C17—C15—H15A111.2
O3—C4—C5118.0 (5)N3—C15—H15B111.2
O3—C4—C3122.3 (5)C17—C15—H15B111.2
C5—C4—C3119.8 (5)H15A—C15—H15B109.1
C6—C5—C4120.4 (5)C17—C16—C14106.1 (5)
C6—C5—H5119.8C17—C16—H16A110.5
C4—C5—H5119.8C14—C16—H16A110.5
C5—C6—C1119.1 (5)C17—C16—H16B110.5
C5—C6—H6120.4C14—C16—H16B110.5
C1—C6—H6120.4H16A—C16—H16B108.7
C8—C7—C12121.6 (5)C15—C17—C16103.7 (6)
C8—C7—N2119.2 (6)C15—C17—H17A111.0
C12—C7—N2119.3 (6)C16—C17—H17A111.0
C7—C8—C9119.7 (5)C15—C17—H17B111.0
C7—C8—H8120.2C16—C17—H17B111.0
C9—C8—H8120.2H17A—C17—H17B109.0
C8—C9—C10119.2 (5)O2—N1—O1123.5 (6)
C8—C9—H9120.4O2—N1—C1118.5 (6)
C10—C9—H9120.4O1—N1—C1118.0 (6)
O6—C10—C11117.6 (5)O5—N2—O4122.1 (6)
O6—C10—C9121.9 (5)O5—N2—C7119.5 (6)
C11—C10—C9120.5 (4)O4—N2—C7118.4 (6)
C12—C11—C10120.1 (5)C15—N3—C14106.6 (4)
C12—C11—H11120.0C15—N3—H3A111 (4)
C10—C11—H11120.0C14—N3—H3A106 (4)
C11—C12—C7119.0 (5)C15—N3—H3B110 (5)
C11—C12—H12120.5C14—N3—H3B110 (5)
C7—C12—H12120.5H3A—N3—H3B112 (6)
O8—C13—O7126.2 (5)C4—O3—H3C109.5
O8—C13—C14117.7 (4)C10—O6—H6A109.5
O7—C13—C14116.1 (4)
C6—C1—C2—C30.0 (8)O8—C13—C14—N33.8 (7)
N1—C1—C2—C3179.4 (5)O7—C13—C14—N3176.0 (5)
C1—C2—C3—C41.4 (8)O8—C13—C14—C16121.9 (6)
C2—C3—C4—O3178.1 (5)O7—C13—C14—C1657.8 (7)
C2—C3—C4—C51.7 (8)N3—C14—C16—C177.9 (7)
O3—C4—C5—C6179.0 (5)C13—C14—C16—C17128.4 (6)
C3—C4—C5—C60.8 (8)N3—C15—C17—C1639.1 (8)
C4—C5—C6—C10.5 (9)C14—C16—C17—C1529.2 (8)
C2—C1—C6—C50.9 (9)C6—C1—N1—O20.4 (8)
N1—C1—C6—C5178.5 (5)C2—C1—N1—O2179.0 (5)
C12—C7—C8—C90.7 (9)C6—C1—N1—O1179.3 (5)
N2—C7—C8—C9178.9 (5)C2—C1—N1—O11.3 (7)
C7—C8—C9—C101.0 (8)C8—C7—N2—O5175.9 (6)
C8—C9—C10—O6179.1 (5)C12—C7—N2—O53.7 (9)
C8—C9—C10—C110.9 (8)C8—C7—N2—O43.9 (8)
O6—C10—C11—C12179.6 (5)C12—C7—N2—O4176.5 (6)
C9—C10—C11—C120.3 (8)C17—C15—N3—C1434.8 (7)
C10—C11—C12—C70.1 (9)C13—C14—N3—C15107.3 (5)
C8—C7—C12—C110.1 (9)C16—C14—N3—C1516.6 (6)
N2—C7—C12—C11179.5 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O80.94 (6)2.03 (6)2.606 (6)118 (5)
N3—H3B···O7i0.93 (5)1.87 (6)2.766 (6)160 (7)
O3—H3C···O7i0.821.922.656 (5)148
O6—H6A···O8ii0.821.822.604 (5)159
C11—H11···O1i0.932.593.503 (8)169
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O80.94 (6)2.03 (6)2.606 (6)118 (5)
N3—H3B···O7i0.93 (5)1.87 (6)2.766 (6)160 (7)
O3—H3C···O7i0.821.922.656 (5)148
O6—H6A···O8ii0.821.822.604 (5)159
C11—H11···O1i0.932.593.503 (8)169
Symmetry codes: (i) x1, y, z; (ii) x+2, y1/2, z+3/2.
 

Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS also thanks DST Inspire for financial assistance.

References

First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSoojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527–533.  Web of Science CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141–148.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds