[Journal logo]

Volume 69 
Part 11 
Page o1723  
November 2013  

Received 9 October 2013
Accepted 19 October 2013
Online 31 October 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.008 Å
R = 0.037
wR = 0.094
Data-to-parameter ratio = 13.7
Details
Open access

Pyrrolidinium-2-carboxyl­ate-4-nitro­phenol (1/2)

aSri Venkateswara College of Engineering, Pennalur, Irungattukottai 602 117, Sriperumbudur Taluk, Tamilnadu, India,bDepartment of Physics, Anna University, Adyar, Chennai 600 025, Tamilnadu, India, and cCentre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
Correspondence e-mail: shirai2011@gmail.com

In the title compound, C5H9NO2·2C6H5NO3, the pyrrolidine ring of the pyrrolidinium-2-carboxyl­ate zwitterion adopts a twisted conformation on the -CH2-CH2- bond adjacent to the N atom. The mean plane of this pyrrolidine ring forms dihedral angles of 25.3 (3) and 32.1 (3)° with the two nitro­phenol rings. An intra­molecular N-H...O hydrogen bond occurs in the pyrrolidinium-2-carboxyl­ate mol­ecule. In the crystal, mol­ecules are linked via O-H...O and N-H...O hydrogen bonds, enclosing R32(8) ring motifs, forming chains running parallel to the a axis. These chains are further cross-linked by O-H...O and C-H...O hydrogen bonds, forming undulating two-dimensional networks lying parallel to (001).

Related literature

For the use of nitro-aromatics as inter­mediates in explosives, dyestuffs, pesticides and organic synthesis, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]). For the occurrence of nitro-aromatics in industrial wastes and as direct pollutants in the environment, see: Yan et al. (2006[Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.]); Soojhawon et al. (2005[Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527-533.]). For ring puckering analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9NO2·2C6H5NO3

  • Mr = 393.35

  • Orthorhombic, P 21 21 21

  • a = 5.9045 (3) Å

  • b = 15.6099 (7) Å

  • c = 20.0424 (9) Å

  • V = 1847.28 (15) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.11 mm-1

  • T = 293 K

  • 0.35 × 0.25 × 0.25 mm

Data collection
  • Bruker SMART APEXII area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.961, Tmax = 0.972

  • 17765 measured reflections

  • 3572 independent reflections

  • 2987 reflections with I > 2[sigma](I)

  • Rint = 0.029

Refinement
  • R[F2 > 2[sigma](F2)] = 0.037

  • wR(F2) = 0.094

  • S = 1.06

  • 3572 reflections

  • 261 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.23 e Å-3

  • [Delta][rho]min = -0.15 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N3-H3A...O8 0.94 (6) 2.03 (6) 2.606 (6) 118 (5)
N3-H3B...O7i 0.93 (5) 1.87 (6) 2.766 (6) 160 (7)
O3-H3C...O7i 0.82 1.92 2.656 (5) 148
O6-H6A...O8ii 0.82 1.82 2.604 (5) 159
C11-H11...O1i 0.93 2.59 3.503 (8) 169
Symmetry codes: (i) x-1, y, z; (ii) [-x+2, y-{\script{1\over 2}}, -z+{\script{3\over 2}}].

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2657 ).


Acknowledgements

The authors thank the TBI X-ray facility, CAS in Crystallography and Biophysics, University of Madras, India, for the data collection. TS also thanks DST Inspire for financial assistance.

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  [CrossRef] [ChemPort] [Web of Science]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Soojhawon, I., Lokhande, P. D., Kodam, K. M. & Gawai, K. R. (2005). Enz. Microb. Technol. 37, 527-533.  [CrossRef] [ChemPort]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Yan, X. F., Xiao, H. M., Gong, X. D. & Ju, X. H. (2006). J. Mol. Struct. (THEOCHEM), 764, 141-148.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o1723  [ doi:10.1107/S1600536813028742 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.