organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Methyl 2-[4-(tri­fluoro­meth­yl)phenyl­sulfan­yl]benzoate

aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
*Correspondence e-mail: jjasinski@keene.edu

(Received 13 October 2013; accepted 14 October 2013; online 19 October 2013)

In the title compound, C15H13F3O2S, the dihedral angle between the benzene rings is 79.5 (1)°. The ester group is twisted by 7.6 (1)° from the mean plane of the adjacent benzene ring. Disorder was modeled over two sites for one F atom of the tri­fluoro­methyl group with an occupancy ratio of 0.54 (6):0.46 (6). In the crystal, mol­ecules are linked via weak C—H⋯O hydrogen bonds, forming two-dimensional networks lying parallel to (101). The networks are linked via C—H⋯π inter­actions, leading to the formation of a three-dimensional supra­molecular structure.

Related literature

For general background and pharmacological properties of the neuroleptic agent flupentixol [systematic name: (EZ)-2-[4-[3-[2-(tri­fluoro­meth­yl)thioxanthen-9-yl­idene]prop­yl]pip­era­zin-1-yl]ethanol] and related compounds, see: Ovhed (1976[Ovhed, I. (1976). Curr. Med. Res. Opin. 4, 144-150.]); Robertson & Trimble (1981[Robertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761-763.]); Valle-Jones & Swarbrick (1981[Valle-Jones, J. C. & Swarbrick, D. J. (1981). Curr. Med. Res. Opin. 1, 543-549.]); Young et al. (1976[Young, J. P. R., Hughes, W. C. & Lader, M. H. (1976). Br. Med. J. (Clin. Res. Ed.), 1, 1116-1118.]). For related structures, see: Post et al. (1975a[Post, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724-2726.],b[Post, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366-2368.]); Siddegowda et al. (2011a[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079-o2080.],b[Siddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017-o2018.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C15H11F3O2S

  • Mr = 312.30

  • Monoclinic, P 21 /c

  • a = 11.0675 (5) Å

  • b = 8.0429 (3) Å

  • c = 15.6614 (7) Å

  • β = 96.654 (5)°

  • V = 1384.70 (11) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 2.44 mm−1

  • T = 173 K

  • 0.28 × 0.22 × 0.12 mm

Data collection
  • Agilent Gemini EOS diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.715, Tmax = 1.000

  • 8110 measured reflections

  • 2705 independent reflections

  • 2224 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.043

  • wR(F2) = 0.123

  • S = 1.03

  • 2705 reflections

  • 201 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.27 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C2–C7 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C15—H15C⋯O2i 0.96 2.45 3.221 (3) 138
C12—H12⋯Cgii 0.93 2.70 3.558 (2) 154
Symmetry codes: (i) [-x+1, y-{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) -x+2, -y, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

The title compound,C15H13F3O2S, is a methyl ester derivative of the starting material for the synthesis of the flupentixol [systematic name: (EZ)-2-[4-[3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol], a well documented neuroleptic. There have been many controlled studies that compared it with a placebo (Ovhed, 1976) and classical antidepressants (Young et al., 1976). Low-dose neuroleptics have been applied increasingly in recent years to treat anxiety and depression (Robertson & Trimble, 1981; Valle-Jones & Swarbrick, 1981). The crystal structures of α-flupenthixol (Post et al., 1975a) and β-flupenthixol (Post et al., 1975b) have been reported. The crystal structures of some related compounds reported by our group are: 1-(2-Hydroxyethyl)-4-[3-(2-trifluoromethyl-9H-thioxanthen- 9-ylidene)propyl]piperazine-1,4-diium dichloride: the dihydrochloride salt of flupentixol (Siddegowda et al., 2011a), and 1-(2-Hydroxyethyl) -4-{3-[(E)-2-(trifluoromethyl)-9H-thioxanthen-9-ylidene]propyl}piperazine-1,4-diium bis(3-carboxyprop-2-enoate) (Siddegowda et al., 2011b). In view of the importance of flupentixol, we report herein on the crystal structure of the title compound a methyl ester derivative of the starting material for the synthesis of the flupentixol.

In the title molecule, Fig. 1, the dihedral angle between the two benzene rings, (C2-C7) and (C8-C13) is 79.5 (1)°. The ester group (O1/C1/C2/O2) is twisted by 7.6 (1)° from the mean plane of the adjacent benzene ring (C2–C7). Disorder was modeled over two sets of sites for fluorine atom, F3/F3A of the trifluoromethyl group, with an occupancy ratio of 0.54 (6) : 0.46 (6). Bond lengths are in normal ranges (Allen et al., 1987).

In the crystal, molecules are linked via C—H···O hydrogen bonds forming two-dimensional networks lying parallel to (101). These networks are linked via C-H···π interactions leading to the formation of a three-dimensional supramolecular structure (Table 1 and Fig. 2).

Related literature top

For general background and pharmacological properties of the neuroleptic drug flupentixol [systematic name: (EZ)-2-[4-[3-[2-(trifluoromethyl)thioxanthen-9-ylidene]propyl]piperazin-1-yl]ethanol] and related compounds, see: Ovhed (1976); Robertson & Trimble (1981); Valle-Jones & Swarbrick (1981); Young et al. (1976). For related structures, see: Post et al. (1975a,b); Siddegowda et al. (2011a,b). For standard bond lengths, see: Allen et al. (1987).

Experimental top

The reactant 2-(4-Trifluoromethylphenylsulfanyl)benzoic acid (I) was obtained as a gift sample from R. L. Fine Chem, Bengaluru, India. 10 g of (I) [0.0335 mol] was dissolved in 50 ml of methanol, followed by the addition of 1 ml of 98% sulphuric acid and the mixture was refluxed for 8 hours at 338 K. The methanol was distilled off and 100 ml of 10% Na2CO3 solution was added and the mixture stirred for 5 min. This was then extracted with dichloromethane and then the solvent was removed by distillation. The product formed was recrystallized from methanol giving colourless block-like crystals of the title compound (M.p. = 413-418 K).

Refinement top

All of the H atoms were placed in their calculated positions and refined using the riding model approximation: C-H = 0.93 Å (CH) and 0.96 Å (CH3), with Uiso(H) = 1.5eq(C-methyl) and = 1.2Ueq(C) for other H atoms. Disorder for one fluorine atom (F3/F3A) in the trifluoromethyl group was modeled over two sets of sites with an occupancy ratio of 0.54 (6):0.46 (6).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. A view of the molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level [the disordered atom F3A, with occupancy 0.46 (6), has been removed for clarity].
[Figure 2] Fig. 2. A viewed along the a axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines [see Table 1 for details; disordered atom F3A, and H atoms not involved in hydrogen bonding, have been omitted for clarity].
Methyl 2-[4-(trifluoromethyl)phenylsulfanyl]benzoate top
Crystal data top
C15H11F3O2SF(000) = 640
Mr = 312.30Dx = 1.498 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54184 Å
a = 11.0675 (5) ÅCell parameters from 2806 reflections
b = 8.0429 (3) Åθ = 4.0–72.2°
c = 15.6614 (7) ŵ = 2.44 mm1
β = 96.654 (5)°T = 173 K
V = 1384.70 (11) Å3Block, colourless
Z = 40.28 × 0.22 × 0.12 mm
Data collection top
Agilent Gemini EOS
diffractometer
2705 independent reflections
Radiation source: Enhance (Cu) X-ray Source2224 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.039
ω scansθmax = 72.4°, θmin = 4.0°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1310
Tmin = 0.715, Tmax = 1.000k = 97
8110 measured reflectionsl = 1819
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.123 w = 1/[σ2(Fo2) + (0.0689P)2 + 0.2842P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2705 reflectionsΔρmax = 0.36 e Å3
201 parametersΔρmin = 0.27 e Å3
0 restraints
Crystal data top
C15H11F3O2SV = 1384.70 (11) Å3
Mr = 312.30Z = 4
Monoclinic, P21/cCu Kα radiation
a = 11.0675 (5) ŵ = 2.44 mm1
b = 8.0429 (3) ÅT = 173 K
c = 15.6614 (7) Å0.28 × 0.22 × 0.12 mm
β = 96.654 (5)°
Data collection top
Agilent Gemini EOS
diffractometer
2705 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2224 reflections with I > 2σ(I)
Tmin = 0.715, Tmax = 1.000Rint = 0.039
8110 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0430 restraints
wR(F2) = 0.123H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
2705 reflectionsΔρmin = 0.27 e Å3
201 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.74068 (5)0.20434 (6)0.53524 (4)0.03547 (18)
F11.15258 (18)0.4950 (3)0.29524 (12)0.0867 (7)
F21.02027 (17)0.4280 (3)0.19408 (10)0.0764 (6)
F31.1534 (11)0.257 (2)0.2621 (9)0.078 (3)0.54 (6)
F3A1.121 (4)0.234 (3)0.240 (3)0.127 (7)0.46 (6)
O10.50339 (13)0.10252 (18)0.67852 (9)0.0370 (4)
O20.61424 (16)0.1251 (2)0.66627 (11)0.0504 (5)
C10.58173 (17)0.0107 (3)0.64017 (13)0.0289 (4)
C20.62526 (16)0.0927 (2)0.56503 (12)0.0268 (4)
C30.59456 (18)0.2586 (3)0.54673 (13)0.0314 (4)
H30.54580.31510.58160.038*
C40.63512 (19)0.3401 (3)0.47797 (14)0.0354 (5)
H40.61490.45090.46700.042*
C50.70653 (19)0.2546 (3)0.42526 (13)0.0343 (5)
H50.73320.30820.37830.041*
C60.73828 (18)0.0906 (3)0.44206 (13)0.0313 (4)
H60.78660.03550.40630.038*
C70.69912 (16)0.0063 (2)0.51164 (13)0.0271 (4)
C80.83570 (18)0.2519 (2)0.45386 (13)0.0310 (4)
C90.78756 (19)0.2956 (3)0.37134 (15)0.0352 (5)
H90.70370.29650.35660.042*
C100.8636 (2)0.3378 (3)0.31074 (14)0.0368 (5)
H100.83120.36600.25520.044*
C110.98830 (19)0.3377 (3)0.33316 (14)0.0345 (5)
C121.0368 (2)0.2971 (3)0.41589 (15)0.0435 (6)
H121.12050.29890.43100.052*
C130.9604 (2)0.2538 (3)0.47609 (15)0.0419 (5)
H130.99290.22580.53170.050*
C141.0745 (2)0.3760 (3)0.26912 (17)0.0493 (6)
C150.4586 (2)0.0262 (3)0.75237 (14)0.0406 (5)
H15A0.42360.08010.73630.061*
H15B0.52470.01170.79720.061*
H15C0.39790.09640.77270.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0389 (3)0.0280 (3)0.0428 (3)0.0061 (2)0.0183 (2)0.0040 (2)
F10.0817 (12)0.1103 (16)0.0725 (12)0.0512 (12)0.0279 (10)0.0079 (11)
F20.0827 (12)0.1077 (16)0.0416 (9)0.0139 (11)0.0196 (8)0.0172 (9)
F30.078 (6)0.083 (8)0.083 (5)0.030 (4)0.054 (5)0.025 (4)
F3A0.196 (15)0.049 (4)0.166 (15)0.017 (9)0.151 (12)0.011 (8)
O10.0469 (9)0.0324 (8)0.0350 (8)0.0067 (6)0.0189 (7)0.0022 (6)
O20.0583 (10)0.0422 (9)0.0564 (11)0.0182 (8)0.0304 (8)0.0184 (8)
C10.0261 (9)0.0314 (10)0.0295 (10)0.0011 (8)0.0042 (7)0.0000 (8)
C20.0229 (9)0.0297 (10)0.0277 (9)0.0004 (7)0.0020 (7)0.0010 (7)
C30.0304 (10)0.0308 (10)0.0335 (10)0.0052 (8)0.0061 (8)0.0007 (8)
C40.0392 (11)0.0281 (10)0.0391 (12)0.0053 (9)0.0057 (9)0.0051 (8)
C50.0378 (11)0.0345 (11)0.0316 (10)0.0019 (9)0.0082 (9)0.0058 (8)
C60.0310 (10)0.0327 (11)0.0317 (10)0.0014 (8)0.0099 (8)0.0034 (8)
C70.0249 (9)0.0246 (9)0.0320 (10)0.0007 (7)0.0036 (7)0.0013 (7)
C80.0329 (10)0.0251 (9)0.0368 (11)0.0028 (8)0.0117 (8)0.0011 (8)
C90.0293 (10)0.0331 (11)0.0429 (12)0.0018 (8)0.0027 (9)0.0012 (9)
C100.0433 (12)0.0341 (11)0.0325 (11)0.0014 (9)0.0031 (9)0.0049 (9)
C110.0394 (11)0.0300 (11)0.0353 (11)0.0036 (9)0.0098 (9)0.0018 (8)
C120.0289 (11)0.0611 (16)0.0407 (13)0.0067 (10)0.0046 (9)0.0080 (11)
C130.0361 (12)0.0558 (14)0.0337 (11)0.0031 (10)0.0039 (9)0.0097 (10)
C140.0543 (15)0.0508 (15)0.0458 (14)0.0043 (12)0.0186 (11)0.0103 (11)
C150.0508 (13)0.0427 (13)0.0315 (11)0.0040 (10)0.0179 (9)0.0010 (9)
Geometric parameters (Å, º) top
S1—C71.783 (2)C5—C61.382 (3)
S1—C81.785 (2)C6—H60.9300
F1—C141.322 (3)C6—C71.394 (3)
F2—C141.324 (3)C8—C91.385 (3)
F3—C141.311 (13)C8—C131.384 (3)
F3A—C141.354 (19)C9—H90.9300
O1—C11.334 (2)C9—C101.382 (3)
O1—C151.446 (2)C10—H100.9300
O2—C11.206 (3)C10—C111.384 (3)
C1—C21.478 (3)C11—C121.383 (3)
C2—C31.398 (3)C11—C141.494 (3)
C2—C71.417 (3)C12—H120.9300
C3—H30.9300C12—C131.382 (3)
C3—C41.380 (3)C13—H130.9300
C4—H40.9300C15—H15A0.9600
C4—C51.389 (3)C15—H15B0.9600
C5—H50.9300C15—H15C0.9600
C7—S1—C8102.41 (9)C10—C9—H9119.9
C1—O1—C15115.20 (17)C9—C10—H10120.2
O1—C1—C2113.60 (17)C9—C10—C11119.6 (2)
O2—C1—O1122.19 (19)C11—C10—H10120.2
O2—C1—C2124.20 (18)C10—C11—C14121.7 (2)
C3—C2—C1119.69 (18)C12—C11—C10120.3 (2)
C3—C2—C7119.33 (18)C12—C11—C14118.0 (2)
C7—C2—C1120.97 (18)C11—C12—H12120.1
C2—C3—H3119.3C13—C12—C11119.8 (2)
C4—C3—C2121.35 (19)C13—C12—H12120.1
C4—C3—H3119.3C8—C13—H13119.9
C3—C4—H4120.4C12—C13—C8120.1 (2)
C3—C4—C5119.17 (19)C12—C13—H13119.9
C5—C4—H4120.4F1—C14—F2105.0 (2)
C4—C5—H5119.7F1—C14—F3A117 (2)
C6—C5—C4120.58 (19)F1—C14—C11112.7 (2)
C6—C5—H5119.7F2—C14—F3A97 (2)
C5—C6—H6119.4F2—C14—C11113.7 (2)
C5—C6—C7121.16 (19)F3—C14—F198.0 (8)
C7—C6—H6119.4F3—C14—F2113.3 (7)
C2—C7—S1119.74 (15)F3—C14—C11112.8 (7)
C6—C7—S1121.86 (15)F3A—C14—C11110.7 (8)
C6—C7—C2118.40 (18)O1—C15—H15A109.5
C9—C8—S1121.72 (16)O1—C15—H15B109.5
C13—C8—S1118.39 (16)O1—C15—H15C109.5
C13—C8—C9119.78 (19)H15A—C15—H15B109.5
C8—C9—H9119.9H15A—C15—H15C109.5
C10—C9—C8120.3 (2)H15B—C15—H15C109.5
S1—C8—C9—C10177.55 (16)C8—S1—C7—C61.42 (18)
S1—C8—C13—C12177.2 (2)C8—C9—C10—C110.6 (3)
O1—C1—C2—C37.3 (3)C9—C8—C13—C120.8 (4)
O1—C1—C2—C7173.53 (17)C9—C10—C11—C120.5 (3)
O2—C1—C2—C3171.6 (2)C9—C10—C11—C14177.6 (2)
O2—C1—C2—C77.6 (3)C10—C11—C12—C131.0 (4)
C1—C2—C3—C4178.95 (19)C10—C11—C14—F1127.0 (3)
C1—C2—C7—S10.1 (2)C10—C11—C14—F27.6 (4)
C1—C2—C7—C6179.48 (17)C10—C11—C14—F3123.1 (8)
C2—C3—C4—C50.9 (3)C10—C11—C14—F3A100 (2)
C3—C2—C7—S1179.11 (15)C11—C12—C13—C80.4 (4)
C3—C2—C7—C60.3 (3)C12—C11—C14—F154.9 (3)
C3—C4—C5—C61.0 (3)C12—C11—C14—F2174.2 (2)
C4—C5—C6—C70.4 (3)C12—C11—C14—F355.0 (9)
C5—C6—C7—S1179.17 (16)C12—C11—C14—F3A78 (2)
C5—C6—C7—C20.2 (3)C13—C8—C9—C101.3 (3)
C7—S1—C8—C981.16 (19)C14—C11—C12—C13177.2 (2)
C7—S1—C8—C13102.49 (19)C15—O1—C1—O21.2 (3)
C7—C2—C3—C40.3 (3)C15—O1—C1—C2179.96 (17)
C8—S1—C7—C2177.93 (15)
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.962.453.221 (3)138
C12—H12···Cgii0.932.703.558 (2)154
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
Cg is the centroid of the C2–C7 benzene ring.
D—H···AD—HH···AD···AD—H···A
C15—H15C···O2i0.962.453.221 (3)138
C12—H12···Cgii0.932.703.558 (2)154
Symmetry codes: (i) x+1, y1/2, z+3/2; (ii) x+2, y, z+1.
 

Acknowledgements

TSY thanks the University of Mysore for research facilities and is also grateful to the Principal, Maharani's Science College for women, Mysore, for giving permission to do research. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOvhed, I. (1976). Curr. Med. Res. Opin. 4, 144–150.  CrossRef CAS PubMed Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationPost, M. L., Kennard, O. & Horn, A. S. (1975a). Acta Cryst. B31, 2724–2726.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationPost, M. L., Kennard, O., Sheldrick, G. M. & Horn, A. S. (1975b). Acta Cryst. B31, 2366–2368.  CSD CrossRef CAS IUCr Journals Web of Science Google Scholar
First citationRobertson, M. M. & Trimble, M. R. (1981). Practitioner, 225, 761–763.  CAS PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Narayana, B. (2011a). Acta Cryst. E67, o2079–o2080.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationSiddegowda, M. S., Butcher, R. J., Akkurt, M., Yathirajan, H. S. & Ramesh, A. R. (2011b). Acta Cryst. E67, o2017–o2018.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationValle-Jones, J. C. & Swarbrick, D. J. (1981). Curr. Med. Res. Opin. 1, 543–549.  Google Scholar
First citationYoung, J. P. R., Hughes, W. C. & Lader, M. H. (1976). Br. Med. J. (Clin. Res. Ed.), 1, 1116–1118.  CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds