organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Anthracene-1,4,9,10-tetra­one

aDepartment of Materials Science, School of Engineering, The University of Shiga Prefecture, 2500 Hassaka-cho, Hikone, Shiga 522-8533, Japan, and bDepartment of Materials Science and Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
*Correspondence e-mail: kitamura.c@mat.usp.ac.jp

(Received 28 August 2013; accepted 24 September 2013; online 2 October 2013)

The asymmetric unit of the title compound, C14H6O4, contains three independent mol­ecules (A, B and C). In mol­ecule C, there are two disordered sets of two carbonyl O atoms [occupancies = 0.643 (11) and 0.357 (11)]. All three mol­ecules are non-planar due to repulsion between two O atoms in peri positions on the anthracene ring, showing a slight difference in deviation of the carbonyl O atoms. The intra­molecular distances between the two nearest O atoms are in the range of 2.685 (10)–2.766 (10) Å. In the crystal, mol­ecules are linked by C—H⋯O and ππ [centroid–centroid distances = 3.615 (2), 3.844 (2) and 3.921 (2) Å] inter­actions, which lead to the formation of a herringbone-like arrangement.

Related literature

For the synthesis of the title compound, see: Yoshino et al. (1981[Yoshino, S., Hayakawa, K. & Kanematsu, K. (1981). J. Org. Chem. 46, 3841-3846.]). For applications of 1,4,9,10-anthracene­tetra­one (quinizarindi­quinone) derivatives, see: Isikli & Díaz (2012[Isikli, S. & Díaz, R. (2012). J. Power Sources, 206, 53-58.]); Adeva et al. (1997[Adeva, M., Caballero, E., García, F., Medarde, M., Sahagún, H. & Tomé, F. (1997). Tetrahedron Lett. 38, 6893-6896.]); Jin et al. (1998[Jin, G.-Z., Kim, Y., Chung, J.-H., Sok, D.-E. & Ahn, B.-Z. (1998). Arch. Pharm. 331, 380-384.]).

[Scheme 1]

Experimental

Crystal data
  • C14H6O4

  • Mr = 238.19

  • Monoclinic, C 2/c

  • a = 39.450 (4) Å

  • b = 5.4465 (5) Å

  • c = 32.787 (3) Å

  • β = 119.185 (9)°

  • V = 6150.4 (11) Å3

  • Z = 24

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 223 K

  • 0.55 × 0.08 × 0.04 mm

Data collection
  • Rigaku R-AXIS RAPID diffractometer

  • 27613 measured reflections

  • 7016 independent reflections

  • 3239 reflections with I > 2σ(I)

  • Rint = 0.126

Refinement
  • R[F2 > 2σ(F2)] = 0.070

  • wR(F2) = 0.204

  • S = 0.99

  • 7016 reflections

  • 506 parameters

  • 4 restraints

  • H-atom parameters constrained

  • Δρmax = 0.43 e Å−3

  • Δρmin = −0.43 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C4C—H4C⋯O1Ai 0.94 2.45 3.373 (5) 169
C5C—H5C⋯O2Ai 0.94 2.33 3.112 (5) 140
C11A—H11A⋯O1Cii 0.94 2.55 3.262 (7) 133
C11C—H11C⋯O3Biii 0.94 2.52 3.113 (4) 121
C12C—H12C⋯O3Biii 0.94 2.49 3.095 (5) 122
Symmetry codes: (i) -x, -y-4, -z+1; (ii) [x+{\script{1\over 2}}, -y-{\script{5\over 2}}, z+{\script{1\over 2}}]; (iii) [-x, y+1, -z+{\script{1\over 2}}].

Data collection: PROCESS-AUTO (Rigaku, 1998[Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.]); cell refinement: PROCESS-AUTO; data reduction: PROCESS-AUTO; program(s) used to solve structure: SIR2004 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

1,4,9,10-Anthracenetetraone (quinizarindiquinone) derivatives are important electrode matetrials (Isikli & Díaz, 2012) as well as effective dienophiles for Diels-Alder reaction (Adeva et al., 1997). Furthermore, the antitumor activity was also investigated (Jin et al., 1998). We have recently investigated the solid-state electrochemical properties of quinone compounds. To elucidate the molecular and packing structures, the crystallographic study of the title compound was carried out. The title compound (I) was synthesized as previously reported (Yoshino et al. (1981)). The title compound, C14H6O4, crystallizes with three molecules in the asymmetric unit, as shown in components A, B, and C (Fig. 1). All the molecules are not planar because of the mutual repulsion of two oxygen atoms on the same side on the anthracene ring. In the component C, there are two disordered sets of oxygen atoms (O3CA/O4CA with occupancy 0.643 (11) and O3CB/O4CB with occupancy 0.357 (11)) although the other components are not disordered. The intramolecular distances between two nearest oxygen atoms are in the range of 2.685 (10)–2.766 (10) Å (O1A···O2A, 2.710 (6) Å; O3A···O4A, 2.721 (5) Å; O1B···O2B, 2.726 (5) Å; O3B···O4B, 2.708 (6) Å; O1C···O2C, 2.674 (5) Å; O3CA···O4CA, 2.766 (10) Å; O3CB···O4CB, 2.685 (10) Å), all of which are shorter than the sum of van der Waals radii of two oxygen atoms. As shown in Fig. 2, in the crystal, molecules are linked by many C—H···O interactions (Table 1). The crystal packing is also controlled by π-π interactions.

Related literature top

For the synthesis of the title compound, see: Yoshino et al. (1981). For applications of 1,4,9,10-anthracenetetraone (quinizarindiquinone) derivatives, see: Isikli & Díaz (2012); Adeva et al. (1997); Jin et al. (1998).

Experimental top

The title compound was prepared according to the literature procedure (Yoshino et al., 1981). Single crystals suitable for X-ray analysis were obtained by recrystallization from ethyl acetate.

Refinement top

All the H atoms were positioned geometrically and refined using a riding model with C—H = 0.94 Å and Uiso(H) = 1.2Ueq(C) for aromatic C—H. In molecule C, two O atoms on the peri positions of the anthracene ring are disordered over two positions with site occupancies of 0.643 (11) and 0.357 (11). During the refinement, the two O atoms were refined with a restrained C—O distance of 1.21 Å.

Computing details top

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO (Rigaku, 1998); data reduction: PROCESS-AUTO (Rigaku, 1998); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the atomic numbering and 40% probability displacement ellipsoids.
[Figure 2] Fig. 2. The packing diagram of the title compound. C—H···O interactions are shown as blue lines.
Anthracene-1,4,9,10-tetraone top
Crystal data top
C14H6O4F(000) = 2928
Mr = 238.19Dx = 1.543 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8613 reflections
a = 39.450 (4) Åθ = 3.1–27.5°
b = 5.4465 (5) ŵ = 0.12 mm1
c = 32.787 (3) ÅT = 223 K
β = 119.185 (9)°Needle, brown
V = 6150.4 (11) Å30.55 × 0.08 × 0.04 mm
Z = 24
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3239 reflections with I > 2σ(I)
Radiation source: fine-focus sealed x-ray tubeRint = 0.126
Graphite monochromatorθmax = 27.5°, θmin = 3.1°
Detector resolution: 10 pixels mm-1h = 5050
ϕ and ω scansk = 76
27613 measured reflectionsl = 4241
7016 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.070Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.204H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.087P)2]
where P = (Fo2 + 2Fc2)/3
7016 reflections(Δ/σ)max < 0.001
506 parametersΔρmax = 0.43 e Å3
4 restraintsΔρmin = 0.43 e Å3
0 constraints
Crystal data top
C14H6O4V = 6150.4 (11) Å3
Mr = 238.19Z = 24
Monoclinic, C2/cMo Kα radiation
a = 39.450 (4) ŵ = 0.12 mm1
b = 5.4465 (5) ÅT = 223 K
c = 32.787 (3) Å0.55 × 0.08 × 0.04 mm
β = 119.185 (9)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3239 reflections with I > 2σ(I)
27613 measured reflectionsRint = 0.126
7016 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0704 restraints
wR(F2) = 0.204H-atom parameters constrained
S = 0.99Δρmax = 0.43 e Å3
7016 reflectionsΔρmin = 0.43 e Å3
506 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O1A0.14529 (8)1.7063 (5)0.68248 (9)0.0598 (7)
O2A0.07223 (8)1.8371 (4)0.61754 (9)0.0536 (7)
O3A0.05999 (8)1.0566 (4)0.51908 (8)0.0518 (7)
O4A0.13395 (7)0.9228 (4)0.58144 (8)0.0460 (6)
C1A0.14361 (11)1.5575 (6)0.65379 (11)0.0412 (8)
C2A0.10561 (10)1.4833 (5)0.61297 (11)0.0361 (8)
C3A0.07008 (11)1.6314 (6)0.60195 (11)0.0401 (8)
C4A0.03261 (11)1.5208 (6)0.57124 (12)0.0453 (9)
H4A0.011.59350.56850.054*
C5A0.02961 (11)1.3194 (6)0.54695 (12)0.0442 (8)
H5A0.0051.24920.52820.053*
C6A0.06389 (10)1.2044 (5)0.54878 (11)0.0378 (8)
C7A0.10251 (10)1.2810 (5)0.58779 (11)0.0347 (7)
C8A0.13729 (10)1.1234 (6)0.59924 (11)0.0366 (8)
C9A0.17549 (10)1.2191 (6)0.63406 (11)0.0392 (8)
C10A0.20923 (11)1.0931 (6)0.64241 (14)0.0503 (9)
H10A0.20730.94710.62610.06*
C11A0.24506 (12)1.1818 (7)0.67426 (14)0.0569 (10)
H11A0.26761.09670.67960.068*
C12A0.24817 (13)1.3966 (8)0.69860 (14)0.0613 (11)
H12A0.27281.45930.71970.074*
C13A0.21521 (12)1.5182 (7)0.69196 (13)0.0531 (10)
H13A0.21731.65990.70940.064*
C14A0.17882 (11)1.4310 (6)0.65937 (12)0.0421 (8)
O1B0.14001 (7)0.4276 (4)0.52608 (8)0.0455 (6)
O2B0.06397 (7)0.5659 (4)0.48193 (9)0.0515 (7)
O3B0.09790 (8)1.3505 (4)0.41681 (8)0.0548 (7)
O4B0.17302 (8)1.2076 (5)0.45538 (9)0.0624 (8)
C1B0.14674 (10)0.6270 (5)0.51492 (11)0.0358 (7)
C2B0.11535 (10)0.7882 (5)0.47961 (11)0.0344 (7)
C3B0.07378 (11)0.7183 (6)0.46274 (12)0.0403 (8)
C4B0.04437 (11)0.8471 (7)0.42133 (12)0.0495 (9)
H4B0.01880.78720.40620.059*
C5B0.05270 (11)1.0460 (7)0.40446 (12)0.0494 (9)
H5B0.0331.1240.37790.059*
C6B0.09212 (11)1.1452 (6)0.42663 (11)0.0401 (8)
C7B0.12368 (10)0.9896 (5)0.46217 (11)0.0373 (8)
C8B0.16520 (11)1.0558 (6)0.47708 (12)0.0430 (9)
C9B0.19592 (11)0.9271 (6)0.51772 (12)0.0441 (9)
C10B0.23415 (12)1.0075 (7)0.53751 (15)0.0567 (10)
H10B0.24031.14560.52520.068*
C11B0.26305 (13)0.8839 (8)0.57533 (16)0.0665 (12)
H11B0.28880.94130.58930.08*
C12B0.25431 (12)0.6752 (8)0.59277 (16)0.0641 (11)
H12B0.27410.59110.61840.077*
C13B0.21658 (12)0.5919 (7)0.57241 (13)0.0518 (10)
H13B0.21070.44870.58370.062*
C14B0.18723 (10)0.7178 (6)0.53537 (12)0.0398 (8)
O1C0.17305 (9)1.2788 (7)0.17275 (13)0.1042 (13)
O2C0.17027 (10)1.6785 (6)0.22155 (12)0.0847 (10)
O3CA0.01820 (11)1.5858 (18)0.3207 (4)0.114 (4)0.643 (11)
O4CA0.02471 (16)1.1302 (12)0.28814 (17)0.083 (3)0.643 (11)
O3CB0.0266 (3)1.4749 (18)0.3371 (2)0.060 (3)0.357 (11)
O4CB0.02148 (18)1.2660 (18)0.2633 (4)0.057 (3)0.357 (11)
C1C0.13826 (11)1.2674 (7)0.19568 (13)0.0503 (9)
C2C0.11541 (11)1.4357 (6)0.23584 (12)0.0423 (8)
C3C0.13602 (13)1.6384 (7)0.24613 (14)0.0512 (10)
C4C0.11251 (14)1.7949 (6)0.28644 (14)0.0543 (10)
H4C0.12481.92160.29380.065*
C5C0.07454 (14)1.7650 (7)0.31302 (14)0.0560 (11)
H5C0.06081.870.33870.067*
C6C0.05317 (11)1.5716 (8)0.30346 (14)0.0646 (12)
C7C0.07676 (11)1.4089 (6)0.26261 (12)0.0435 (8)
C8C0.05391 (10)1.2096 (8)0.25511 (15)0.0687 (13)
C9C0.07658 (11)1.0542 (6)0.21240 (12)0.0441 (8)
C10C0.05745 (12)0.8738 (7)0.20146 (13)0.0510 (9)
H10C0.03030.85880.21960.061*
C11C0.07745 (12)0.7176 (6)0.16470 (12)0.0475 (9)
H11C0.06420.59450.1580.057*
C12C0.11713 (12)0.7412 (7)0.13742 (12)0.0482 (9)
H12C0.13090.63320.11230.058*
C13C0.13679 (11)0.9233 (7)0.14693 (12)0.0460 (9)
H13C0.16380.94090.12790.055*
C14C0.11654 (10)1.0806 (6)0.18478 (11)0.0404 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.064 (2)0.0527 (15)0.0550 (16)0.0027 (14)0.0230 (15)0.0210 (13)
O2A0.0585 (19)0.0391 (13)0.0710 (17)0.0006 (12)0.0376 (16)0.0093 (12)
O3A0.0491 (18)0.0493 (14)0.0499 (15)0.0043 (12)0.0187 (14)0.0145 (12)
O4A0.0461 (17)0.0353 (12)0.0601 (15)0.0007 (11)0.0288 (14)0.0073 (11)
C1A0.048 (2)0.0338 (17)0.0386 (18)0.0020 (16)0.0188 (18)0.0004 (15)
C2A0.038 (2)0.0311 (16)0.0392 (18)0.0009 (14)0.0186 (17)0.0014 (14)
C3A0.046 (2)0.0340 (17)0.0440 (19)0.0005 (16)0.0251 (19)0.0023 (15)
C4A0.036 (2)0.0451 (19)0.054 (2)0.0035 (16)0.0219 (19)0.0000 (17)
C5A0.036 (2)0.047 (2)0.0455 (19)0.0026 (16)0.0164 (18)0.0012 (16)
C6A0.043 (2)0.0317 (16)0.0379 (18)0.0011 (15)0.0188 (17)0.0005 (14)
C7A0.038 (2)0.0305 (15)0.0380 (17)0.0007 (14)0.0202 (16)0.0017 (14)
C8A0.039 (2)0.0337 (16)0.0403 (18)0.0012 (15)0.0217 (17)0.0014 (14)
C9A0.037 (2)0.0367 (17)0.0419 (19)0.0014 (15)0.0172 (17)0.0075 (15)
C10A0.042 (2)0.045 (2)0.061 (2)0.0070 (18)0.023 (2)0.0071 (18)
C11A0.042 (3)0.060 (2)0.066 (3)0.005 (2)0.024 (2)0.017 (2)
C12A0.038 (3)0.071 (3)0.055 (2)0.008 (2)0.008 (2)0.015 (2)
C13A0.049 (3)0.054 (2)0.044 (2)0.006 (2)0.013 (2)0.0029 (17)
C14A0.042 (2)0.0395 (18)0.0385 (18)0.0051 (16)0.0151 (18)0.0031 (15)
O1B0.0476 (16)0.0359 (12)0.0500 (14)0.0013 (11)0.0215 (13)0.0080 (10)
O2B0.0435 (17)0.0439 (13)0.0698 (17)0.0030 (12)0.0297 (15)0.0087 (12)
O3B0.067 (2)0.0400 (13)0.0523 (15)0.0032 (13)0.0252 (15)0.0118 (12)
O4B0.055 (2)0.0648 (17)0.0672 (17)0.0093 (14)0.0297 (16)0.0172 (14)
C1B0.040 (2)0.0297 (16)0.0381 (17)0.0000 (15)0.0194 (17)0.0005 (14)
C2B0.037 (2)0.0295 (15)0.0341 (16)0.0015 (14)0.0150 (16)0.0013 (13)
C3B0.039 (2)0.0343 (17)0.0458 (19)0.0006 (15)0.0189 (18)0.0012 (15)
C4B0.035 (2)0.058 (2)0.049 (2)0.0014 (18)0.0156 (19)0.0018 (18)
C5B0.042 (2)0.055 (2)0.042 (2)0.0069 (18)0.0130 (19)0.0068 (17)
C6B0.050 (2)0.0354 (17)0.0322 (17)0.0009 (16)0.0184 (18)0.0029 (14)
C7B0.041 (2)0.0311 (16)0.0363 (17)0.0028 (15)0.0163 (17)0.0004 (14)
C8B0.046 (2)0.0375 (17)0.046 (2)0.0062 (16)0.0230 (19)0.0017 (16)
C9B0.038 (2)0.0406 (18)0.051 (2)0.0007 (16)0.0187 (19)0.0008 (16)
C10B0.043 (3)0.056 (2)0.071 (3)0.0036 (19)0.028 (2)0.005 (2)
C11B0.036 (3)0.075 (3)0.081 (3)0.004 (2)0.023 (2)0.002 (2)
C12B0.038 (3)0.071 (3)0.075 (3)0.013 (2)0.022 (2)0.018 (2)
C13B0.040 (2)0.052 (2)0.060 (2)0.0069 (18)0.023 (2)0.0106 (18)
C14B0.037 (2)0.0358 (17)0.046 (2)0.0019 (15)0.0195 (18)0.0012 (15)
O1C0.0304 (19)0.127 (3)0.125 (3)0.0038 (19)0.014 (2)0.072 (2)
O2C0.054 (2)0.085 (2)0.098 (2)0.0204 (18)0.024 (2)0.0192 (19)
O3CA0.044 (4)0.130 (7)0.116 (6)0.004 (4)0.001 (4)0.079 (5)
O4CA0.037 (3)0.109 (5)0.064 (4)0.017 (3)0.006 (3)0.032 (3)
O3CB0.059 (7)0.069 (6)0.031 (4)0.000 (5)0.007 (4)0.000 (4)
O4CB0.034 (5)0.076 (6)0.059 (6)0.014 (4)0.021 (4)0.025 (5)
C1C0.030 (2)0.061 (2)0.057 (2)0.0000 (18)0.019 (2)0.0115 (18)
C2C0.039 (2)0.0420 (18)0.047 (2)0.0010 (16)0.0215 (19)0.0023 (16)
C3C0.050 (3)0.048 (2)0.059 (2)0.0053 (19)0.029 (2)0.0063 (18)
C4C0.072 (3)0.0399 (19)0.063 (3)0.007 (2)0.042 (3)0.0013 (18)
C5C0.073 (3)0.049 (2)0.049 (2)0.000 (2)0.032 (2)0.0093 (18)
C6C0.053 (3)0.071 (3)0.049 (2)0.009 (2)0.008 (2)0.018 (2)
C7C0.036 (2)0.0484 (19)0.0416 (19)0.0000 (17)0.0154 (18)0.0040 (16)
C8C0.027 (2)0.087 (3)0.077 (3)0.002 (2)0.013 (2)0.042 (3)
C9C0.030 (2)0.050 (2)0.047 (2)0.0017 (16)0.0148 (18)0.0090 (16)
C10C0.036 (2)0.060 (2)0.048 (2)0.0013 (18)0.0135 (19)0.0099 (18)
C11C0.049 (3)0.049 (2)0.052 (2)0.0012 (18)0.030 (2)0.0051 (17)
C12C0.048 (3)0.053 (2)0.043 (2)0.0105 (19)0.023 (2)0.0094 (17)
C13C0.033 (2)0.060 (2)0.044 (2)0.0055 (17)0.0177 (18)0.0074 (17)
C14C0.034 (2)0.0449 (19)0.0409 (19)0.0045 (16)0.0173 (18)0.0056 (15)
Geometric parameters (Å, º) top
O1A—C1A1.219 (4)C7B—C8B1.507 (5)
O2A—C3A1.217 (4)C8B—C9B1.470 (5)
O3A—C6A1.214 (4)C9B—C10B1.390 (5)
O4A—C8A1.215 (4)C9B—C14B1.394 (5)
C1A—C14A1.480 (5)C10B—C11B1.383 (6)
C1A—C2A1.498 (5)C10B—H10B0.94
C2A—C7A1.346 (4)C11B—C12B1.389 (5)
C2A—C3A1.501 (5)C11B—H11B0.94
C3A—C4A1.453 (5)C12B—C13B1.378 (5)
C4A—C5A1.326 (5)C12B—H12B0.94
C4A—H4A0.94C13B—C14B1.383 (5)
C5A—C6A1.465 (5)C13B—H13B0.94
C5A—H5A0.94O1C—C1C1.202 (5)
C6A—C7A1.494 (5)O2C—C3C1.209 (5)
C7A—C8A1.503 (5)O3CA—C6C1.2116 (10)
C8A—C9A1.473 (5)O4CA—C8C1.2125 (10)
C9A—C14A1.390 (5)O3CB—C6C1.2105 (11)
C9A—C10A1.401 (5)O4CB—C8C1.2115 (10)
C10A—C11A1.372 (5)C1C—C14C1.482 (5)
C10A—H10A0.94C1C—C2C1.493 (5)
C11A—C12A1.387 (6)C2C—C7C1.346 (5)
C11A—H11A0.94C2C—C3C1.504 (5)
C12A—C13A1.379 (6)C3C—C4C1.462 (5)
C12A—H12A0.94C4C—C5C1.325 (6)
C13A—C14A1.390 (5)C4C—H4C0.94
C13A—H13A0.94C5C—C6C1.475 (5)
O1B—C1B1.216 (3)C5C—H5C0.94
O2B—C3B1.213 (4)C6C—C7C1.493 (5)
O3B—C6B1.215 (4)C7C—C8C1.506 (5)
O4B—C8B1.225 (4)C8C—C9C1.502 (5)
C1B—C14B1.484 (5)C9C—C10C1.388 (5)
C1B—C2B1.499 (4)C9C—C14C1.390 (5)
C2B—C7B1.350 (4)C10C—C11C1.368 (5)
C2B—C3B1.502 (5)C10C—H10C0.94
C3B—C4B1.465 (5)C11C—C12C1.379 (5)
C4B—C5B1.328 (5)C11C—H11C0.94
C4B—H4B0.94C12C—C13C1.385 (5)
C5B—C6B1.462 (5)C12C—H12C0.94
C5B—H5B0.94C13C—C14C1.395 (5)
C6B—C7B1.487 (5)C13C—H13C0.94
O1A—C1A—C14A121.3 (3)C9B—C8B—C7B117.7 (3)
O1A—C1A—C2A121.5 (3)C10B—C9B—C14B119.6 (3)
C14A—C1A—C2A117.0 (3)C10B—C9B—C8B120.0 (3)
C7A—C2A—C1A121.4 (3)C14B—C9B—C8B120.3 (3)
C7A—C2A—C3A119.8 (3)C11B—C10B—C9B119.8 (4)
C1A—C2A—C3A118.7 (3)C11B—C10B—H10B120.1
O2A—C3A—C4A120.8 (3)C9B—C10B—H10B120.1
O2A—C3A—C2A121.9 (3)C10B—C11B—C12B120.4 (4)
C4A—C3A—C2A117.3 (3)C10B—C11B—H11B119.8
C5A—C4A—C3A121.5 (3)C12B—C11B—H11B119.8
C5A—C4A—H4A119.3C13B—C12B—C11B119.8 (4)
C3A—C4A—H4A119.3C13B—C12B—H12B120.1
C4A—C5A—C6A121.3 (3)C11B—C12B—H12B120.1
C4A—C5A—H5A119.4C12B—C13B—C14B120.4 (4)
C6A—C5A—H5A119.4C12B—C13B—H13B119.8
O3A—C6A—C5A119.8 (3)C14B—C13B—H13B119.8
O3A—C6A—C7A123.3 (3)C13B—C14B—C9B120.0 (3)
C5A—C6A—C7A116.8 (3)C13B—C14B—C1B119.1 (3)
C2A—C7A—C6A120.2 (3)C9B—C14B—C1B120.9 (3)
C2A—C7A—C8A121.0 (3)O1C—C1C—C14C120.2 (3)
C6A—C7A—C8A118.7 (3)O1C—C1C—C2C122.3 (3)
O4A—C8A—C9A121.4 (3)C14C—C1C—C2C117.6 (3)
O4A—C8A—C7A121.4 (3)C7C—C2C—C1C120.9 (3)
C9A—C8A—C7A117.1 (3)C7C—C2C—C3C119.9 (3)
C14A—C9A—C10A119.1 (3)C1C—C2C—C3C119.3 (3)
C14A—C9A—C8A121.3 (3)O2C—C3C—C4C120.5 (4)
C10A—C9A—C8A119.6 (3)O2C—C3C—C2C122.3 (4)
C11A—C10A—C9A120.3 (4)C4C—C3C—C2C117.2 (4)
C11A—C10A—H10A119.9C5C—C4C—C3C122.6 (4)
C9A—C10A—H10A119.9C5C—C4C—H4C118.7
C10A—C11A—C12A120.3 (4)C3C—C4C—H4C118.7
C10A—C11A—H11A119.9C4C—C5C—C6C121.8 (4)
C12A—C11A—H11A119.9C4C—C5C—H5C119.1
C13A—C12A—C11A120.1 (4)C6C—C5C—H5C119.1
C13A—C12A—H12A119.9O3CB—C6C—C5C116.7 (6)
C11A—C12A—H12A119.9O3CA—C6C—C5C119.6 (5)
C12A—C13A—C14A119.9 (4)O3CB—C6C—C7C116.3 (6)
C12A—C13A—H13A120.1O3CA—C6C—C7C121.7 (4)
C14A—C13A—H13A120.1C5C—C6C—C7C116.3 (3)
C13A—C14A—C9A120.3 (4)C2C—C7C—C6C122.2 (3)
C13A—C14A—C1A119.4 (3)C2C—C7C—C8C123.3 (3)
C9A—C14A—C1A120.2 (3)C6C—C7C—C8C114.4 (3)
O1B—C1B—C14B120.4 (3)O4CB—C8C—C9C115.7 (5)
O1B—C1B—C2B122.4 (3)O4CA—C8C—C9C120.4 (4)
C14B—C1B—C2B117.1 (3)O4CB—C8C—C7C115.6 (5)
C7B—C2B—C1B121.5 (3)O4CA—C8C—C7C119.7 (4)
C7B—C2B—C3B119.8 (3)C9C—C8C—C7C115.3 (3)
C1B—C2B—C3B118.6 (3)C10C—C9C—C14C119.4 (3)
O2B—C3B—C4B120.0 (3)C10C—C9C—C8C119.2 (3)
O2B—C3B—C2B123.3 (3)C14C—C9C—C8C121.3 (3)
C4B—C3B—C2B116.7 (3)C11C—C10C—C9C121.0 (4)
C5B—C4B—C3B122.1 (4)C11C—C10C—H10C119.5
C5B—C4B—H4B118.9C9C—C10C—H10C119.5
C3B—C4B—H4B118.9C10C—C11C—C12C119.9 (3)
C4B—C5B—C6B120.9 (3)C10C—C11C—H11C120
C4B—C5B—H5B119.5C12C—C11C—H11C120
C6B—C5B—H5B119.5C11C—C12C—C13C120.2 (3)
O3B—C6B—C5B120.0 (3)C11C—C12C—H12C119.9
O3B—C6B—C7B122.6 (3)C13C—C12C—H12C119.9
C5B—C6B—C7B117.4 (3)C12C—C13C—C14C120.0 (3)
C2B—C7B—C6B120.7 (3)C12C—C13C—H13C120
C2B—C7B—C8B120.5 (3)C14C—C13C—H13C120
C6B—C7B—C8B118.7 (3)C9C—C14C—C13C119.4 (3)
O4B—C8B—C9B121.3 (3)C9C—C14C—C1C121.3 (3)
O4B—C8B—C7B121.0 (3)C13C—C14C—C1C119.2 (3)
O1A—C1A—C2A—C7A164.1 (3)C7B—C8B—C9B—C10B169.7 (3)
C14A—C1A—C2A—C7A12.3 (4)O4B—C8B—C9B—C14B165.3 (3)
O1A—C1A—C2A—C3A12.5 (4)C7B—C8B—C9B—C14B13.1 (5)
C14A—C1A—C2A—C3A171.1 (3)C14B—C9B—C10B—C11B1.9 (6)
C7A—C2A—C3A—O2A166.1 (3)C8B—C9B—C10B—C11B179.1 (3)
C1A—C2A—C3A—O2A17.2 (4)C9B—C10B—C11B—C12B2.0 (6)
C7A—C2A—C3A—C4A13.1 (4)C10B—C11B—C12B—C13B0.4 (6)
C1A—C2A—C3A—C4A163.5 (3)C11B—C12B—C13B—C14B1.4 (6)
O2A—C3A—C4A—C5A166.9 (3)C12B—C13B—C14B—C9B1.5 (5)
C2A—C3A—C4A—C5A12.4 (5)C12B—C13B—C14B—C1B178.5 (3)
C3A—C4A—C5A—C6A2.2 (5)C10B—C9B—C14B—C13B0.1 (5)
C4A—C5A—C6A—O3A163.5 (3)C8B—C9B—C14B—C13B177.3 (3)
C4A—C5A—C6A—C7A15.7 (5)C10B—C9B—C14B—C1B179.8 (3)
C1A—C2A—C7A—C6A176.9 (3)C8B—C9B—C14B—C1B2.7 (5)
C3A—C2A—C7A—C6A0.4 (4)O1B—C1B—C14B—C13B10.0 (5)
C1A—C2A—C7A—C8A1.0 (4)C2B—C1B—C14B—C13B171.5 (3)
C3A—C2A—C7A—C8A177.5 (3)O1B—C1B—C14B—C9B170.0 (3)
O3A—C6A—C7A—C2A164.6 (3)C2B—C1B—C14B—C9B8.5 (4)
C5A—C6A—C7A—C2A14.5 (4)O1C—C1C—C2C—C7C175.9 (4)
O3A—C6A—C7A—C8A17.4 (4)C14C—C1C—C2C—C7C3.6 (5)
C5A—C6A—C7A—C8A163.4 (3)O1C—C1C—C2C—C3C4.4 (6)
C2A—C7A—C8A—O4A169.0 (3)C14C—C1C—C2C—C3C176.0 (3)
C6A—C7A—C8A—O4A8.9 (4)C7C—C2C—C3C—O2C175.7 (4)
C2A—C7A—C8A—C9A9.1 (4)C1C—C2C—C3C—O2C3.9 (5)
C6A—C7A—C8A—C9A173.0 (3)C7C—C2C—C3C—C4C1.7 (5)
O4A—C8A—C9A—C14A170.5 (3)C1C—C2C—C3C—C4C178.7 (3)
C7A—C8A—C9A—C14A7.7 (4)O2C—C3C—C4C—C5C176.7 (4)
O4A—C8A—C9A—C10A8.7 (5)C2C—C3C—C4C—C5C0.7 (5)
C7A—C8A—C9A—C10A173.2 (3)C3C—C4C—C5C—C6C0.5 (6)
C14A—C9A—C10A—C11A1.7 (5)C4C—C5C—C6C—O3CB144.1 (7)
C8A—C9A—C10A—C11A179.1 (3)C4C—C5C—C6C—O3CA162.1 (9)
C9A—C10A—C11A—C12A0.3 (5)C4C—C5C—C6C—C7C0.9 (6)
C10A—C11A—C12A—C13A2.0 (6)C1C—C2C—C7C—C6C179.0 (3)
C11A—C12A—C13A—C14A2.7 (6)C3C—C2C—C7C—C6C1.3 (5)
C12A—C13A—C14A—C9A1.2 (5)C1C—C2C—C7C—C8C1.1 (6)
C12A—C13A—C14A—C1A177.7 (3)C3C—C2C—C7C—C8C179.3 (3)
C10A—C9A—C14A—C13A1.0 (5)O3CB—C6C—C7C—C2C143.3 (7)
C8A—C9A—C14A—C13A179.8 (3)O3CA—C6C—C7C—C2C162.7 (9)
C10A—C9A—C14A—C1A175.5 (3)C5C—C6C—C7C—C2C0.1 (6)
C8A—C9A—C14A—C1A3.7 (5)O3CB—C6C—C7C—C8C34.9 (8)
O1A—C1A—C14A—C13A13.7 (5)O3CA—C6C—C7C—C8C19.2 (10)
C2A—C1A—C14A—C13A169.9 (3)C5C—C6C—C7C—C8C178.2 (4)
O1A—C1A—C14A—C9A162.8 (3)C2C—C7C—C8C—O4CB145.1 (7)
C2A—C1A—C14A—C9A13.6 (4)C6C—C7C—C8C—O4CB36.8 (8)
O1B—C1B—C2B—C7B169.3 (3)C2C—C7C—C8C—O4CA150.2 (6)
C14B—C1B—C2B—C7B9.2 (4)C6C—C7C—C8C—O4CA27.9 (7)
O1B—C1B—C2B—C3B9.3 (4)C2C—C7C—C8C—C9C5.7 (6)
C14B—C1B—C2B—C3B172.3 (3)C6C—C7C—C8C—C9C176.2 (4)
C7B—C2B—C3B—O2B167.5 (3)O4CB—C8C—C9C—C10C37.6 (8)
C1B—C2B—C3B—O2B13.9 (5)O4CA—C8C—C9C—C10C27.4 (8)
C7B—C2B—C3B—C4B11.6 (4)C7C—C8C—C9C—C10C176.9 (3)
C1B—C2B—C3B—C4B167.0 (3)O4CB—C8C—C9C—C14C145.2 (7)
O2B—C3B—C4B—C5B166.9 (3)O4CA—C8C—C9C—C14C149.8 (6)
C2B—C3B—C4B—C5B12.3 (5)C7C—C8C—C9C—C14C5.9 (6)
C3B—C4B—C5B—C6B0.3 (5)C14C—C9C—C10C—C11C1.7 (5)
C4B—C5B—C6B—O3B165.7 (3)C8C—C9C—C10C—C11C175.6 (4)
C4B—C5B—C6B—C7B12.1 (5)C9C—C10C—C11C—C12C1.1 (5)
C1B—C2B—C7B—C6B179.1 (3)C10C—C11C—C12C—C13C0.4 (5)
C3B—C2B—C7B—C6B0.5 (4)C11C—C12C—C13C—C14C1.3 (5)
C1B—C2B—C7B—C8B1.4 (4)C10C—C9C—C14C—C13C0.8 (5)
C3B—C2B—C7B—C8B177.2 (3)C8C—C9C—C14C—C13C176.4 (4)
O3B—C6B—C7B—C2B165.3 (3)C10C—C9C—C14C—C1C178.8 (3)
C5B—C6B—C7B—C2B12.5 (4)C8C—C9C—C14C—C1C1.6 (5)
O3B—C6B—C7B—C8B16.9 (5)C12C—C13C—C14C—C9C0.7 (5)
C5B—C6B—C7B—C8B165.3 (3)C12C—C13C—C14C—C1C177.4 (3)
C2B—C7B—C8B—O4B165.8 (3)O1C—C1C—C14C—C9C176.2 (4)
C6B—C7B—C8B—O4B12.0 (5)C2C—C1C—C14C—C9C3.3 (5)
C2B—C7B—C8B—C9B12.6 (4)O1C—C1C—C14C—C13C1.8 (6)
C6B—C7B—C8B—C9B169.6 (3)C2C—C1C—C14C—C13C178.7 (3)
O4B—C8B—C9B—C10B11.9 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4C—H4C···O1Ai0.942.453.373 (5)169
C5C—H5C···O2Ai0.942.333.112 (5)140
C11A—H11A···O1Cii0.942.553.262 (7)133
C11C—H11C···O3Biii0.942.523.113 (4)121
C12C—H12C···O3Biii0.942.493.095 (5)122
Symmetry codes: (i) x, y4, z+1; (ii) x+1/2, y5/2, z+1/2; (iii) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4C—H4C···O1Ai0.942.453.373 (5)169
C5C—H5C···O2Ai0.942.333.112 (5)140
C11A—H11A···O1Cii0.942.553.262 (7)133
C11C—H11C···O3Biii0.942.523.113 (4)121
C12C—H12C···O3Biii0.942.493.095 (5)122
Symmetry codes: (i) x, y4, z+1; (ii) x+1/2, y5/2, z+1/2; (iii) x, y+1, z+1/2.
 

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (C) (No. 23550161) from the JSPS.

References

First citationAdeva, M., Caballero, E., García, F., Medarde, M., Sahagún, H. & Tomé, F. (1997). Tetrahedron Lett. 38, 6893–6896.  CrossRef CAS Web of Science Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationIsikli, S. & Díaz, R. (2012). J. Power Sources, 206, 53–58.  Web of Science CrossRef CAS Google Scholar
First citationJin, G.-Z., Kim, Y., Chung, J.-H., Sok, D.-E. & Ahn, B.-Z. (1998). Arch. Pharm. 331, 380–384.  CrossRef CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationYoshino, S., Hayakawa, K. & Kanematsu, K. (1981). J. Org. Chem. 46, 3841–3846.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds