supplementary materials


wm2773 scheme

Acta Cryst. (2013). E69, m621    [ doi:10.1107/S1600536813028821 ]

Di­chlorido­bis­[1-(2,4,6-tri­methyl­phen­yl)-1H-imidazole-[kappa]N3]copper(II)

Y. Zhang and Z. Lin

Abstract top

In the title complex, [CuCl2(C12H14N2)2], the Cu2+ cation is situated on an inversion centre and is coordinated by two N atoms from symmetry-related 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. In the organic ligand, the dihedral angle between the benzene ring of the mesityl moiety and the imidazole ring is 76.99 (18)°. Weak intra­molecular C-H...Cl hydrogen-bonding inter­actions consolidate the mol­ecular conformation.

Comment top

In recent years, phosphorescent Cu(II) complexes received attention due to their nontoxic properties (Deegana et al., 2007), which make these complexes applicable in biological probing (Beaudoin et al., 2009; Deegana et al., 2007; Pettit & Ueda, 1992), solar energy conversion, and organic light emitting devices (Kuang et al., 2002; Jia et al., 2005; Teyssot et al., 2007). Our interest is focused on the design and synthesis of phosphorescent Cu(II) complexes with various ancillary ligands, and their applications in anti-cancer therapy (Awwadi, 2013; Raptopoulou et al., 1998). We herein describe the synthesis and structural characterization of the title compound, [CuCl2(C12H14N2)2], (I).

The molecular structure of compound (I) is shown in Fig. 1. The metal cation is situated on an inversion centre and is coordinated by two N atoms of the 1-mesityl-1H-imidazole ligands and by two chloride anions in a slightly distorted square-planar geometry. The mesityl ring moiety and the imidazole ring are almost orthogonal to each other, with a dihedral angle between the two rings of 76.99 (18) °. Weak intramolecular C—H···Cl hydrogen bonding interactions consolidate the molecular conformation (Fig. 2).

Related literature top

For related structures, see: Awwadi (2013); Jia et al. (2005). For the bioactivity of Cu complexes, see: Beaudoin et al. (2009); Deegana et al. (2007); Pettit & Ueda (1992). For the photochemistry of Cu complexes, see: Kuang et al. (2002); Raptopoulou et al. (1998); Teyssot et al. (2007).

Experimental top

In a Schlenk flask, a solution of 1-mesityl-1H-imidazole (10 ml, 1M in CH2Cl2) was added to a suspension of CuCl2 (5 mmol) in 10 ml CH2Cl2 at room temperature. The reaction was stirred in the absence of light for 6 h at this temperature. The reaction mixture was then filtered in the dark and the volume of the solution reduced to 5.0 ml. Pentane was added to afford the product as an green solid in 40% yield. Single crystals suitable for X-ray diffraction were obtained by slow evaporation of a solution of the title compound in CH2Cl2 at room temperature.

Refinement top

C-bound H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.93 (aromatic), 0.96 (CH3) Å and with Uiso(H)= 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of compound (I). Displacement ellipsoids are shown at the 40% probability level. H atoms are presented as small spheres of arbitrary radius. [Symmetry code A) -x+1, -y+1, -z+1.]
[Figure 2] Fig. 2. The crystal packing of compound (I). C—H···Cl interactions are shown as dashed lines.
Dichloridobis[1-(2,4,6-trimethylphenyl)-1H-imidazole-κN3]copper(II) top
Crystal data top
[CuCl2(C12H14N2)2]F(000) = 526
Mr = 506.94Dx = 1.402 Mg m3
Monoclinic, P21/cCu Kα radiation, λ = 1.54178 Å
Hall symbol: -P 2ybcCell parameters from 7467 reflections
a = 7.1488 (6) Åθ = 2.2–27.0°
b = 19.7517 (18) ŵ = 3.47 mm1
c = 8.5126 (7) ÅT = 298 K
β = 92.674 (8)°Plate, green
V = 1200.68 (18) Å30.44 × 0.32 × 0.05 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
2114 independent reflections
Radiation source: fine-focus sealed tube1738 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
phi and ω scansθmax = 66.9°, θmin = 4.5°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 78
Tmin = 0.311, Tmax = 0.846k = 2123
5702 measured reflectionsl = 109
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0792P)2 + 1.6476P]
where P = (Fo2 + 2Fc2)/3
2114 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = 1.18 e Å3
Crystal data top
[CuCl2(C12H14N2)2]V = 1200.68 (18) Å3
Mr = 506.94Z = 2
Monoclinic, P21/cCu Kα radiation
a = 7.1488 (6) ŵ = 3.47 mm1
b = 19.7517 (18) ÅT = 298 K
c = 8.5126 (7) Å0.44 × 0.32 × 0.05 mm
β = 92.674 (8)°
Data collection top
Bruker APEX CCD
diffractometer
2114 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
1738 reflections with I > 2σ(I)
Tmin = 0.311, Tmax = 0.846Rint = 0.036
5702 measured reflectionsθmax = 66.9°
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.145Δρmax = 1.16 e Å3
S = 1.02Δρmin = 1.18 e Å3
2114 reflectionsAbsolute structure: ?
145 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0301 (3)
Cl10.2765 (2)0.45641 (8)0.65130 (12)0.0843 (6)
N10.3864 (4)0.45022 (13)0.3140 (3)0.0271 (6)
N20.2163 (4)0.37951 (14)0.1669 (3)0.0298 (6)
C50.0735 (5)0.33960 (18)0.0315 (4)0.0321 (7)
C70.1896 (5)0.28533 (19)0.0109 (4)0.0370 (8)
H70.29960.29370.07040.044*
C40.0884 (4)0.32493 (17)0.1230 (4)0.0292 (7)
C10.2452 (5)0.40602 (17)0.3112 (4)0.0305 (7)
H10.17620.39500.39760.037*
C20.4488 (5)0.45081 (18)0.1632 (4)0.0348 (8)
H20.54750.47690.12950.042*
C80.1471 (5)0.21907 (18)0.0325 (4)0.0358 (8)
C110.1388 (5)0.25940 (17)0.1680 (4)0.0296 (7)
C100.0168 (5)0.20712 (18)0.1221 (4)0.0345 (8)
H100.04610.16300.15250.041*
C120.3186 (5)0.2443 (2)0.2602 (4)0.0399 (9)
H12A0.30640.25700.36810.060*
H12B0.41890.26950.21710.060*
H12C0.34520.19680.25430.060*
C60.1178 (5)0.41059 (19)0.0233 (5)0.0430 (9)
H6A0.11650.44050.06570.065*
H6B0.23950.41140.07600.065*
H6C0.02560.42510.09460.065*
C90.2722 (6)0.1608 (2)0.0181 (6)0.0521 (10)
H9A0.22410.11960.02820.078*
H9B0.27570.15690.13060.078*
H9C0.39650.16870.01600.078*
C30.3455 (5)0.40795 (19)0.0722 (4)0.0372 (8)
H30.35900.39930.03410.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0369 (4)0.0328 (4)0.0208 (4)0.0118 (3)0.0032 (3)0.0030 (3)
Cl10.1018 (10)0.1223 (12)0.0307 (5)0.0855 (9)0.0242 (5)0.0249 (6)
N10.0296 (14)0.0288 (14)0.0230 (13)0.0028 (11)0.0024 (10)0.0001 (11)
N20.0329 (14)0.0316 (15)0.0252 (13)0.0094 (12)0.0043 (11)0.0045 (11)
C50.0282 (16)0.0331 (18)0.0352 (17)0.0009 (14)0.0049 (13)0.0074 (15)
C70.0271 (17)0.042 (2)0.042 (2)0.0025 (15)0.0027 (14)0.0063 (16)
C40.0296 (16)0.0339 (17)0.0242 (15)0.0089 (14)0.0044 (12)0.0074 (14)
C10.0339 (17)0.0350 (17)0.0229 (15)0.0094 (14)0.0042 (13)0.0035 (13)
C20.0401 (19)0.0388 (19)0.0259 (17)0.0128 (15)0.0050 (14)0.0009 (14)
C80.0323 (18)0.0363 (19)0.0391 (19)0.0084 (15)0.0041 (14)0.0085 (15)
C110.0331 (17)0.0327 (18)0.0234 (16)0.0054 (14)0.0045 (13)0.0011 (13)
C100.0372 (19)0.0314 (18)0.0354 (18)0.0055 (15)0.0057 (14)0.0022 (15)
C120.042 (2)0.042 (2)0.0352 (19)0.0074 (16)0.0045 (15)0.0033 (16)
C60.038 (2)0.036 (2)0.055 (2)0.0018 (16)0.0016 (17)0.0028 (17)
C90.042 (2)0.043 (2)0.071 (3)0.0121 (18)0.0017 (19)0.012 (2)
C30.045 (2)0.046 (2)0.0213 (16)0.0150 (17)0.0087 (14)0.0058 (15)
Geometric parameters (Å, º) top
Cu1—N1i2.004 (3)C6—H6A0.9600
Cu1—N12.004 (3)C6—H6B0.9600
Cu1—Cl1i2.2684 (10)C6—H6C0.9600
Cu1—Cl12.2684 (10)C7—C81.390 (5)
N1—C11.334 (4)C7—H70.9300
N1—C21.378 (4)C8—C101.388 (5)
N2—C11.343 (4)C8—C91.509 (5)
N2—C31.374 (4)C9—H9A0.9600
N2—C41.451 (4)C9—H9B0.9600
C1—H10.9300C9—H9C0.9600
C2—C31.345 (5)C10—C111.396 (5)
C2—H20.9300C10—H100.9300
C3—H30.9300C11—C121.504 (5)
C4—C111.392 (5)C12—H12A0.9600
C4—C51.395 (5)C12—H12B0.9600
C5—C71.393 (5)C12—H12C0.9600
C5—C61.507 (5)
N1i—Cu1—N1180.00 (13)H6A—C6—H6B109.5
N1i—Cu1—Cl1i89.56 (8)C5—C6—H6C109.5
N1—Cu1—Cl1i90.44 (8)H6A—C6—H6C109.5
N1i—Cu1—Cl190.44 (8)H6B—C6—H6C109.5
N1—Cu1—Cl189.56 (8)C8—C7—C5122.4 (3)
Cl1i—Cu1—Cl1180.00 (7)C8—C7—H7118.8
C1—N1—C2105.5 (3)C5—C7—H7118.8
C1—N1—Cu1127.8 (2)C10—C8—C7118.3 (3)
C2—N1—Cu1126.5 (2)C10—C8—C9120.1 (3)
C1—N2—C3107.4 (3)C7—C8—C9121.6 (3)
C1—N2—C4126.4 (3)C8—C9—H9A109.5
C3—N2—C4125.8 (3)C8—C9—H9B109.5
N1—C1—N2110.8 (3)H9A—C9—H9B109.5
N1—C1—H1124.6C8—C9—H9C109.5
N2—C1—H1124.6H9A—C9—H9C109.5
C3—C2—N1109.8 (3)H9B—C9—H9C109.5
C3—C2—H2125.1C8—C10—C11121.9 (3)
N1—C2—H2125.1C8—C10—H10119.0
C2—C3—N2106.6 (3)C11—C10—H10119.0
C2—C3—H3126.7C4—C11—C10117.4 (3)
N2—C3—H3126.7C4—C11—C12122.1 (3)
C11—C4—C5123.0 (3)C10—C11—C12120.5 (3)
C11—C4—N2117.9 (3)C11—C12—H12A109.5
C5—C4—N2119.1 (3)C11—C12—H12B109.5
C7—C5—C4117.0 (3)H12A—C12—H12B109.5
C7—C5—C6121.4 (3)C11—C12—H12C109.5
C4—C5—C6121.5 (3)H12A—C12—H12C109.5
C5—C6—H6A109.5H12B—C12—H12C109.5
C5—C6—H6B109.5
Cl1i—Cu1—N1—C1174.6 (3)C11—C4—C5—C71.9 (5)
Cl1—Cu1—N1—C15.4 (3)N2—C4—C5—C7178.4 (3)
Cl1i—Cu1—N1—C20.1 (3)C11—C4—C5—C6176.2 (3)
Cl1—Cu1—N1—C2179.9 (3)N2—C4—C5—C60.3 (5)
C2—N1—C1—N20.3 (4)C4—C5—C7—C81.1 (5)
Cu1—N1—C1—N2175.7 (2)C6—C5—C7—C8177.1 (4)
C3—N2—C1—N10.1 (4)C5—C7—C8—C100.4 (5)
C4—N2—C1—N1173.2 (3)C5—C7—C8—C9178.4 (4)
C1—N1—C2—C30.4 (4)C7—C8—C10—C110.5 (5)
Cu1—N1—C2—C3175.9 (2)C9—C8—C10—C11178.3 (3)
N1—C2—C3—N20.3 (4)C5—C4—C11—C102.0 (5)
C1—N2—C3—C20.1 (4)N2—C4—C11—C10178.6 (3)
C4—N2—C3—C2173.0 (3)C5—C4—C11—C12177.0 (3)
C1—N2—C4—C1174.2 (4)N2—C4—C11—C120.4 (5)
C3—N2—C4—C1197.6 (4)C8—C10—C11—C41.2 (5)
C1—N2—C4—C5109.1 (4)C8—C10—C11—C12177.8 (3)
C3—N2—C4—C579.1 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.553.060 (4)115
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···Cl10.932.553.060 (4)115
references
References top

Awwadi, F. F. (2013). Acta Cryst. E69, m116.

Beaudoin, C., Morel, L., Boyer, D., Mahiou, R. & Gautier, A. (2009). Dalton Trans. pp. 6894–6902.

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Deegana, C., McCanna, M., Devereuxa, M., Coylec, B. & Egan, D. A. (2007). Cancer Lett. 2, 224–233.

Jia, W., McCormick, T., Tao, Y., Lu, J. & Wang, S. (2005). Inorg. Chem. 44, 5706–5712.

Kuang, S. M., Cuttell, D. G., McMillin, D. R., Fanwick, P. E. & Walton, R. A. (2002). Inorg. Chem. 41, 3313–3322.

Pettit, L. D. & Ueda, J. (1992). J. Inorg. Biochem. 3, 203–210.

Raptopoulou, C. P., Paschalidou, S., Pantazaki, A. A., Terzis, A., Perlepes, S. P., Lialiaris, T., Bakalbassis, E. G., Mrozinski, J. & Kyriakidis, D. A. (1998). J. Inorg. Biochem. 71, 15–27.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Teyssot, M. L., Jarrousse, A. S., Manin, M., Chevry, A., Roche, S., Norre, F., Tsuboyama, A., Kuge, K., Furugori, M., Okada, S., Hoshino, M. & Ueno, K. (2007). Inorg. Chem. 46, 1992–2001.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.