[Journal logo]

Volume 69 
Part 11 
Page i80  
November 2013  

Received 10 October 2013
Accepted 18 October 2013
Online 26 October 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](Dy-Ni) = 0.003 Å
R = 0.042
wR = 0.052
Data-to-parameter ratio = 25.3
Details
Open access

Redetermination of Dy3Ni from single-crystal X-ray data

aDepartment of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla & Mefodiya Street 6, 79005 Lviv, Ukraine, and b344 Spedding Hall, Ames Laboratory, Ames, IA 50011-3020, USA
Correspondence e-mail: v.levyckyy@gmail.com

The classification of the title compound, tridysprosium nickel, into the Fe3C (or Al3Ni) structure type has been deduced from powder X-ray diffraction data with lattice parameters reported in a previous study [Lemaire & Paccard (1967[Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311-315.]). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311-315]. The current re-investigation of Dy3Ni based on single-crystal X-ray data revealed atomic positional parameters and anisotropic displacement parameters with high precision. The asymmetric unit consists of two Dy and one Ni atoms. One Dy atom has site symmetry .m. (Wyckoff position 4c) and is surrounded by twelve Dy and three Ni atoms. The other Dy atom (site symmetry 1, 8d) has eleven Dy and three Ni atoms as neighbours, forming a distorted Frank-Kasper polyhedron. The coordination polyhedron of the Ni atom (.m., 4c) is a tricapped trigonal prism formed by nine Dy atoms.

Related literature

For a previous crystallographic investigation of the title compound, see: Lemaire & Paccard (1967[Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311-315.]). For the Fe3C structure, see: Hendricks (1930[Hendricks, S. B. (1930). Z. Kristallogr. 74, 534-545.]), and for the Al3Ni structure, see: Bradley & Taylor (1937[Bradley, A. J. & Taylor, A. (1937). Philos. Mag. 23, 1049-1067.]). For the Dy-Ni phase diagram, see: Zheng & Wang (1982[Zheng, J.-X. & Wang, C.-Z. (1982). Acta Phys. Sin. 31, 668-673.]). For magnetic properties of Dy3Ni, see: Talik et al. (1996[Talik, E., Mydlarz, T. & Gilewski, A. (1996). J. Alloys Compd, 233, 136-139.]), and for magnetic properties of Dy3Co, see: Baranov et al. (1995[Baranov, N. V., Pirogov, A. N. & Teplykh, A. E. (1995). J. Alloys Compd, 226, 70-74.]). For isotypic compounds, see: Tsvyashchenko (1986[Tsvyashchenko, A. V. (1986). J. Less-Common Met. 118, 103-107.]); Romaka et al. (2011[Romaka, L., Romaka, V. & Stadnyk, Yu. (2011). Chem. Met. Alloys, 4, 89-93.]); Buschow & van der Goot (1969[Buschow, K. H. J. & van der Goot, A. S. (1969). J. Less-Common Met. 18, 309-311.]); Givord & Lemaire (1971[Givord, F. & Lemaire, R. (1971). Solid State Commun. 9, 341-346.]). For structure refinements of other compounds in the Dy-Ni system, see: Levytskyy et al. (2012a[Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012a). Acta Cryst. E68, i20.],b[Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012b). Acta Cryst. E68, i83.]).

Experimental

Crystal data
  • Dy3Ni

  • Mr = 546.21

  • Orthorhombic, P n m a

  • a = 6.863 (3) Å

  • b = 9.553 (3) Å

  • c = 6.302 (2) Å

  • V = 413.2 (3) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 57.86 mm-1

  • T = 293 K

  • 0.14 × 0.11 × 0.10 mm

Data collection
  • Stoe IPDS II diffractometer

  • Absorption correction: numerical (X-RED; Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.007, Tmax = 0.026

  • 973 measured reflections

  • 582 independent reflections

  • 447 reflections with I > 2[sigma](I)

  • Rint = 0.042

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.052

  • S = 1.12

  • 582 reflections

  • 23 parameters

  • [Delta][rho]max = 2.82 e Å-3

  • [Delta][rho]min = -2.65 e Å-3

Data collection: X-AREA (Stoe & Cie, 2009[Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SIR2011 (Burla et al., 2012[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); molecular graphics: DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2777 ).


References

Baranov, N. V., Pirogov, A. N. & Teplykh, A. E. (1995). J. Alloys Compd, 226, 70-74.  [CrossRef] [ChemPort] [Web of Science]
Bradley, A. J. & Taylor, A. (1937). Philos. Mag. 23, 1049-1067.  [ChemPort]
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Mallamo, M., Mazzone, A., Polidori, G. & Spagna, R. (2012). J. Appl. Cryst. 45, 357-361.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Buschow, K. H. J. & van der Goot, A. S. (1969). J. Less-Common Met. 18, 309-311.  [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Givord, F. & Lemaire, R. (1971). Solid State Commun. 9, 341-346.  [CrossRef] [ChemPort] [Web of Science]
Hendricks, S. B. (1930). Z. Kristallogr. 74, 534-545.  [ChemPort]
Lemaire, R. & Paccard, D. (1967). Bull. Soc. Fr. Mineral. Cristallogr. 40, 311-315.
Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012a). Acta Cryst. E68, i20.  [CrossRef] [IUCr Journals]
Levytskyy, V., Babizhetskyy, V., Kotur, B. & Smetana, V. (2012b). Acta Cryst. E68, i83.  [CrossRef] [IUCr Journals]
Romaka, L., Romaka, V. & Stadnyk, Yu. (2011). Chem. Met. Alloys, 4, 89-93.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Stoe & Cie (2009). X-AREA and X-RED. Stoe & Cie, Darmstadt, Germany.
Talik, E., Mydlarz, T. & Gilewski, A. (1996). J. Alloys Compd, 233, 136-139.  [CrossRef] [ChemPort] [Web of Science]
Tsvyashchenko, A. V. (1986). J. Less-Common Met. 118, 103-107.  [CrossRef] [ChemPort]
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Zheng, J.-X. & Wang, C.-Z. (1982). Acta Phys. Sin. 31, 668-673.  [ChemPort]


Acta Cryst (2013). E69, i80  [ doi:10.1107/S1600536813028717 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.