organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2-Amino­benzoic acid–4-[2-(pyridin-4-yl)eth­yl]pyridine (2/1)

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, and bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia
*Correspondence e-mail: edward.tiekink@gmail.com

(Received 30 September 2013; accepted 2 October 2013; online 5 October 2013)

The asymmetric unit of the title co-crystal, C12H12N2·2C7H7NO2, comprises a centrosymmetric 4-[2-(pyridin-4-yl)eth­yl]pyridine mol­ecule and a 2-amino­benzoic acid mol­ecule in a general position. The acid has a small twist between the carb­oxy­lic acid residue and the ring [dihedral angle = 7.13 (6)°] despite the presence of an intra­molecular N—H⋯O(carbon­yl) hydrogen bond. Three-mol­ecule aggregates are formed via O—H⋯N(pyrid­yl) hydrogen bonds, and these are connected into supra­molecular layers in the bc plane by N—H⋯O(carbon­yl) hydrogen bonds and ππ inter­actions between pyridine and benzene rings [inter-centroid distance = 3.6332 (9) Å]. Layers are connected along the a axis by weak ππ inter­actions between benzene rings [3.9577 (10) Å].

Related literature

For co-crystals of 2-amino­benzoic acid with pyridyl derivatives, see: Arman, Kaulgud et al. (2012[Arman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 227-232.]); Arman, Miller et al. (2012[Arman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 825-830.]). For the isostructural 4,4′-bipyridyl analogue, see: Arman & Tiekink (2013[Arman, H. D. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1447.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12N2·2C7H7NO2

  • Mr = 458.51

  • Monoclinic, P 21 /c

  • a = 11.305 (2) Å

  • b = 11.102 (2) Å

  • c = 8.8737 (16) Å

  • β = 94.565 (5)°

  • V = 1110.2 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 98 K

  • 0.34 × 0.10 × 0.07 mm

Data collection
  • Rigaku AFC12/SATURN724 diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995[Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.864, Tmax = 1.000

  • 8527 measured reflections

  • 2545 independent reflections

  • 2386 reflections with I > 2σ(I)

  • Rint = 0.039

Refinement
  • R[F2 > 2σ(F2)] = 0.045

  • wR(F2) = 0.112

  • S = 1.08

  • 2545 reflections

  • 163 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.21 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1n⋯O2 0.86 (1) 2.03 (1) 2.6961 (15) 134 (2)
O1—H1o⋯N2 0.86 (1) 1.78 (1) 2.6290 (14) 172 (2)
N1—H2n⋯O2i 0.85 (1) 2.19 (1) 3.0106 (15) 163 (1)
Symmetry code: (i) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005[Molecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

During continuing structural studies of co-crystals involving 2-aminobenzoic acid (anthranilic acid) and variously substituted pyridyl derivatives (Arman, Kaulgud et al., 2012; Arman, Miller et al., 2012), the title co-crystal, (I), was characterized.

The asymmetric unit of (I), Fig. 1, comprises a molecule of 2-aminobenzoic acid in a general position and half a molecule of 4,4'-bipyridylethane, being disposed about a centre of inversion. Despite the presence of an intramolecular N1—H···O2 hydrogen bond, Table 1, the carboxylic acid residue is slightly twisted out of the plane of the benzene ring to which it is connected, forming a dihedral angle of 7.13 (6)°. The 4,4'-bipyridylethane molecule is also almost planar with the r.m.s. deviation of the 14 non-hydrogen atoms being 0.066 Å. The structure of (I) is isostructural with the 4,4'-bipyridyl derivative (Arman & Tiekink, 2013).

The components of the co-crystal are connected into a three-molecule aggregate via O1—H···N2 hydrogen bonds, Table 1. These are connected into supramolecular layers in the bc plane by N1—H···O2 hydrogen bonds, Fig. 2. Additional stability to the layers is afforded by ππ interactions between the pyridyl and benzene rings [inter-centroid distance = 3.6332 (9) Å, angle of inclination = 1.71 (6)° for symmetry operation x, y, 1 + z], Fig. 2. Weaker ππ interactions between centrosymmetrically related benzene rings [3.9577 (10) Å for symmetry operation: -x, -y, -z] provide the links between the layers, Fig. 3.

Related literature top

For co-crystals of 2-aminobenzoic acid with pyridyl derivatives, see: Arman, Kaulgud et al. (2012); Arman, Miller et al. (2012). For the isostructural 4,4'-bipyridyl analogue, see: Arman & Tiekink (2013).

Experimental top

Crystals of (I) were obtained by the co-crystallization of 4,4'-bipyridylethane (Sigma Aldrich, 0.11 mmol) and anthranilic acid (Sigma-Aldrich, 0.22 mmol) in acetone solution. Crystals were obtained by slow evaporation. Melting point: 381–385 K. IR spectra(cm-1): 750(sh)(m), 830(s)(sh), 1016(w), 1063(w), 1153(m), 1238(m), 1295(s), 1413(m), 1607(m), 1661(m), 2922(br), 3342(m), 3449(m).

Refinement top

C-bound H-atoms were placed in calculated positions (C—H = 0.95-0.99 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2Ueq(C). The O-bound and N-bound H-atoms were located in a difference Fourier map and were refined with a distance restraints of O—H = 0.84±0.01 Å and N—H = 0.88±0.01 Å, and with Uiso(H) = 1.2Ueq(N) and 1.5Ueq(O).

Computing details top

Data collection: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); cell refinement: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); data reduction: CrystalClear (Molecular Structure Corporation & Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structures of the components of (I), showing atom-labelling scheme and displacement ellipsoids at the 70% probability level: (a) 2-aminobenzoic acid and (b) 4,4'-bipyridylethane (unlabelled atoms are related by the symmetry operation: 1 - x, -y, 2 - z).
[Figure 2] Fig. 2. Side-on view of the supramolecular layer in the bc plane in (I). The three-molecule aggregates are sustained by O—H···N hydrogen bonds shown as orange dashed lines. These are connected into layers by N—H···O and ππ interactions, shown as blue and purple dashed lines, respectively.
[Figure 3] Fig. 3. Unit-cell contents of (I) viewed in projection down the b axis. The O—H···N, N—H···O and ππ interactions are shown as orange, blue and purple dashed lines, respectively.
2-Aminobenzoic acid–4-[2-(pyridin-4-yl)ethyl]pyridine (2/1) top
Crystal data top
C12H12N2·2C7H7NO2F(000) = 484
Mr = 458.51Dx = 1.372 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ybcCell parameters from 3826 reflections
a = 11.305 (2) Åθ = 2.6–40.2°
b = 11.102 (2) ŵ = 0.09 mm1
c = 8.8737 (16) ÅT = 98 K
β = 94.565 (5)°Needle, gold
V = 1110.2 (4) Å30.34 × 0.10 × 0.07 mm
Z = 2
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2545 independent reflections
Radiation source: fine-focus sealed tube2386 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1414
Tmin = 0.864, Tmax = 1.000k = 1414
8527 measured reflectionsl = 911
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.0469P)2 + 0.5018P]
where P = (Fo2 + 2Fc2)/3
2545 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.36 e Å3
3 restraintsΔρmin = 0.21 e Å3
Crystal data top
C12H12N2·2C7H7NO2V = 1110.2 (4) Å3
Mr = 458.51Z = 2
Monoclinic, P21/cMo Kα radiation
a = 11.305 (2) ŵ = 0.09 mm1
b = 11.102 (2) ÅT = 98 K
c = 8.8737 (16) Å0.34 × 0.10 × 0.07 mm
β = 94.565 (5)°
Data collection top
Rigaku AFC12K/SATURN724
diffractometer
2545 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2386 reflections with I > 2σ(I)
Tmin = 0.864, Tmax = 1.000Rint = 0.039
8527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0453 restraints
wR(F2) = 0.112H atoms treated by a mixture of independent and constrained refinement
S = 1.08Δρmax = 0.36 e Å3
2545 reflectionsΔρmin = 0.21 e Å3
163 parameters
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.23122 (9)0.08940 (8)0.22847 (10)0.0230 (2)
H1O0.2610 (14)0.0684 (16)0.3166 (13)0.035*
O20.24830 (8)0.11075 (8)0.19402 (10)0.0221 (2)
N10.18511 (11)0.19962 (10)0.08352 (12)0.0232 (3)
H1N0.2156 (13)0.2139 (15)0.0061 (12)0.028*
H2N0.1885 (14)0.2498 (12)0.1548 (14)0.028*
C10.15987 (10)0.01116 (10)0.00795 (13)0.0161 (2)
C20.15020 (10)0.08349 (11)0.11662 (13)0.0172 (2)
C30.10295 (11)0.05498 (11)0.26429 (13)0.0193 (3)
H30.09730.11600.33960.023*
C40.06456 (11)0.06078 (12)0.30126 (13)0.0208 (3)
H40.03320.07760.40160.025*
C50.07110 (11)0.15347 (11)0.19362 (14)0.0204 (3)
H50.04360.23220.21960.024*
C60.11832 (10)0.12773 (11)0.04894 (13)0.0181 (3)
H60.12300.18990.02490.022*
C70.21531 (10)0.01002 (11)0.14633 (13)0.0172 (2)
N20.32920 (9)0.04519 (10)0.50153 (11)0.0194 (2)
C80.36977 (11)0.06728 (11)0.53384 (13)0.0199 (3)
H80.36420.12620.45590.024*
C90.41896 (11)0.10008 (11)0.67537 (13)0.0195 (3)
H90.44500.18050.69390.023*
C100.43024 (10)0.01417 (11)0.79159 (13)0.0175 (3)
C110.38823 (11)0.10211 (11)0.75721 (13)0.0189 (3)
H110.39400.16330.83230.023*
C120.33799 (11)0.12738 (11)0.61248 (13)0.0197 (3)
H120.30870.20630.59140.024*
C130.48476 (11)0.05171 (11)0.94524 (13)0.0192 (3)
H13A0.55810.09780.93160.023*
H13B0.42890.10660.99160.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0346 (5)0.0189 (5)0.0145 (4)0.0008 (4)0.0047 (4)0.0020 (3)
O20.0306 (5)0.0181 (4)0.0170 (4)0.0008 (3)0.0013 (3)0.0020 (3)
N10.0359 (6)0.0157 (5)0.0175 (5)0.0027 (4)0.0014 (4)0.0031 (4)
C10.0178 (5)0.0164 (6)0.0141 (5)0.0013 (4)0.0019 (4)0.0001 (4)
C20.0176 (5)0.0167 (6)0.0174 (5)0.0014 (4)0.0023 (4)0.0005 (4)
C30.0227 (6)0.0200 (6)0.0151 (5)0.0039 (5)0.0009 (4)0.0026 (4)
C40.0219 (6)0.0244 (6)0.0156 (5)0.0023 (5)0.0015 (4)0.0027 (4)
C50.0222 (6)0.0176 (6)0.0211 (6)0.0022 (5)0.0002 (4)0.0031 (5)
C60.0205 (5)0.0168 (6)0.0171 (5)0.0005 (4)0.0022 (4)0.0005 (4)
C70.0194 (5)0.0176 (6)0.0148 (5)0.0006 (4)0.0027 (4)0.0005 (4)
N20.0201 (5)0.0232 (5)0.0146 (5)0.0025 (4)0.0002 (4)0.0002 (4)
C80.0223 (6)0.0206 (6)0.0166 (5)0.0023 (5)0.0009 (4)0.0032 (4)
C90.0208 (6)0.0191 (6)0.0184 (6)0.0005 (4)0.0002 (4)0.0012 (4)
C100.0170 (5)0.0209 (6)0.0144 (5)0.0017 (4)0.0003 (4)0.0000 (4)
C110.0201 (6)0.0198 (6)0.0166 (5)0.0025 (4)0.0002 (4)0.0028 (4)
C120.0212 (6)0.0194 (6)0.0184 (6)0.0013 (4)0.0002 (4)0.0009 (4)
C130.0213 (6)0.0201 (6)0.0156 (5)0.0001 (5)0.0017 (4)0.0002 (5)
Geometric parameters (Å, º) top
O1—C71.3271 (14)C6—H60.9500
O1—H1O0.859 (9)N2—C121.3402 (16)
O2—C71.2425 (15)N2—C81.3530 (16)
N1—C21.3732 (16)C8—C91.3813 (17)
N1—H1N0.856 (9)C8—H80.9500
N1—H2N0.845 (9)C9—C101.4031 (16)
C1—C61.4144 (16)C9—H90.9500
C1—C21.4246 (16)C10—C111.4007 (17)
C1—C71.4783 (16)C10—C131.5096 (16)
C2—C31.4111 (16)C11—C121.3910 (16)
C3—C41.3875 (18)C11—H110.9500
C3—H30.9500C12—H120.9500
C4—C51.4020 (17)C13—C13i1.526 (2)
C4—H40.9500C13—H13A0.9900
C5—C61.3805 (16)C13—H13B0.9900
C5—H50.9500
C7—O1—H1O107.5 (12)O1—C7—C1113.90 (10)
C2—N1—H1N117.4 (11)C12—N2—C8117.95 (10)
C2—N1—H2N119.2 (11)N2—C8—C9122.76 (11)
H1N—N1—H2N122.3 (16)N2—C8—H8118.6
C6—C1—C2119.66 (11)C9—C8—H8118.6
C6—C1—C7119.43 (10)C8—C9—C10119.70 (11)
C2—C1—C7120.90 (11)C8—C9—H9120.1
N1—C2—C3119.37 (11)C10—C9—H9120.1
N1—C2—C1122.85 (11)C11—C10—C9117.20 (11)
C3—C2—C1117.78 (11)C11—C10—C13123.93 (11)
C4—C3—C2121.03 (11)C9—C10—C13118.87 (11)
C4—C3—H3119.5C12—C11—C10119.56 (11)
C2—C3—H3119.5C12—C11—H11120.2
C3—C4—C5121.35 (11)C10—C11—H11120.2
C3—C4—H4119.3N2—C12—C11122.81 (12)
C5—C4—H4119.3N2—C12—H12118.6
C6—C5—C4118.50 (11)C11—C12—H12118.6
C6—C5—H5120.7C10—C13—C13i115.01 (13)
C4—C5—H5120.7C10—C13—H13A108.5
C5—C6—C1121.63 (11)C13i—C13—H13A108.5
C5—C6—H6119.2C10—C13—H13B108.5
C1—C6—H6119.2C13i—C13—H13B108.5
O2—C7—O1122.52 (11)H13A—C13—H13B107.5
O2—C7—C1123.52 (11)
C6—C1—C2—N1177.85 (11)C6—C1—C7—O16.50 (16)
C7—C1—C2—N13.56 (18)C2—C1—C7—O1172.09 (10)
C6—C1—C2—C32.41 (17)C12—N2—C8—C90.20 (18)
C7—C1—C2—C3176.18 (10)N2—C8—C9—C101.20 (18)
N1—C2—C3—C4178.72 (11)C8—C9—C10—C111.02 (17)
C1—C2—C3—C41.53 (17)C8—C9—C10—C13179.72 (11)
C2—C3—C4—C50.08 (18)C9—C10—C11—C120.05 (17)
C3—C4—C5—C60.82 (18)C13—C10—C11—C12179.16 (11)
C4—C5—C6—C10.11 (18)C8—N2—C12—C110.95 (18)
C2—C1—C6—C51.75 (18)C10—C11—C12—N21.08 (19)
C7—C1—C6—C5176.86 (11)C11—C10—C13—C13i12.1 (2)
C6—C1—C7—O2176.01 (11)C9—C10—C13—C13i168.71 (12)
C2—C1—C7—O25.40 (18)
Symmetry code: (i) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.86 (1)2.03 (1)2.6961 (15)134 (2)
O1—H1o···N20.86 (1)1.78 (1)2.6290 (14)172 (2)
N1—H2n···O2ii0.85 (1)2.19 (1)3.0106 (15)163 (1)
Symmetry code: (ii) x, y1/2, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1n···O20.856 (11)2.032 (13)2.6961 (15)133.7 (15)
O1—H1o···N20.859 (13)1.776 (12)2.6290 (14)172.3 (17)
N1—H2n···O2i0.846 (13)2.190 (13)3.0106 (15)163.3 (14)
Symmetry code: (i) x, y1/2, z1/2.
 

Acknowledgements

We gratefully thank the Ministry of Higher Education (Malaysia) and the University of Malaya (UM) for funding structural studies through the High-Impact Research scheme (UM·C/HIR-MOHE/SC/03).

References

First citationArman, H. D., Kaulgud, T., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 227–232.  Web of Science CrossRef CAS Google Scholar
First citationArman, H. D., Miller, T. & Tiekink, E. R. T. (2012). Z. Kristallogr. Cryst. Mat. 227, 825–830.  CAS Google Scholar
First citationArman, H. D. & Tiekink, E. R. T. (2013). Acta Cryst. E69, o1447.  CSD CrossRef IUCr Journals Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationHigashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationMolecular Structure Corporation & Rigaku (2005). CrystalClear. MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds