[Journal logo]

Volume 69 
Part 11 
Pages o1674-o1675  
November 2013  

Received 27 August 2013
Accepted 14 October 2013
Online 19 October 2013

Key indicators
Single-crystal X-ray study
T = 150 K
Mean [sigma](C-C) = 0.005 Å
R = 0.084
wR = 0.244
Data-to-parameter ratio = 33.5
Details
Open access

Bis(2,4,6-tri­amino-1,3,5-triazin-1-ium) 2-[bis­(carboxyl­atometh­yl)aza­nium­yl]acetate trihydrate

aDepartment of Chemistry, University of Hull, Kingston upon Hull HU6 7RX, England
Correspondence e-mail: t.prior@hull.ac.uk

The title compound, 2C3H7N6+·C6H7NO62-·3H2O, was obtained by mixing melamine and nitrilo­tri­acetic acid in aqueous solution. There is proton transfer from the nitrilo­triacteic acid to melamine to produce two melaminium cations and an inter­nal proton transfer to generate the [HN(CH2COO)]2- zwitterion. The melaminium cations are arranged in hydrogen-bonded tapes formed by N-H...N inter­actions. These tapes extend parallel to the [010] direction and are stacked parallel to the a axis at a mean separation of 3.3559 (11) Å. Between these tapes lie the anions and lattice water mol­ecules. Further O-H...O and N-H...O hydrogen bonds exist between the water mol­ecules, the anions, and the melaminium cations, generating a three-dimensional array. The crystal examined was found to be twinned by a twofold rotation about the direct lattice direction [100]. The two twin components were present in the ratio 0.5918:0.4082 (14).

Related literature

For compounds of melamine with simple carb­oxy­lic acid, see, for example: Froschauer & Weil (2012[Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2553-o2554.]); Eppel & Bernstein (2009[Eppel, S. & Bernstein, J. (2009). Cryst. Growth Des. 9, 1683-1691.]); Perpétuo & Janczak (2002[Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112-o114.]). For those with tri­carb­oxy­lic acids, see: Eshtiagh-Hosseini et al. (2010[Eshtiagh-Hosseini, H., Mahjobbizadeh, M., Mirzaei, M., Fromm, K. & Crochet, A. (2010). Eur. J. Chem. 1, 179-181.]); Huczynski et al. (2009[Huczynski, A., Janczak, J. & Brzezinski, B. (2009). J. Mol. Struct. 922, 77-82.]); Perpetuo & Janczak (2003[Perpetuo, G. J. & Janczak, J. (2003). Pol. J. Chem. 77, 1323-1328.]). For assignment of protonation on the grounds of bond angle and bond length, see: Childs et al. (2007[Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.]) and Hingerty et al. (1981[Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140-147.]), respectively. An introduction to graph-set theory may be found in Etter et al. (1990[Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.]).

[Scheme 1]

Experimental

Crystal data
  • 2C3H7N6+·C6H7NO62-·3H2O

  • Mr = 497.43

  • Triclinic, [P \overline 1]

  • a = 6.7117 (11) Å

  • b = 12.1495 (19) Å

  • c = 13.102 (3) Å

  • [alpha] = 82.714 (15)°

  • [beta] = 89.252 (16)°

  • [gamma] = 83.238 (13)°

  • V = 1052.4 (3) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.13 mm-1

  • T = 150 K

  • 0.36 × 0.16 × 0.04 mm

Data collection
  • Stoe IPDS2 diffractometer

  • Absorption correction: analytical (X-RED and X-SHAPE; Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]) Tmin = 0.957, Tmax = 0.994

  • 10946 measured reflections

  • 10946 independent reflections

  • 5515 reflections with I > 2[sigma](I)

Refinement
  • R[F2 > 2[sigma](F2)] = 0.084

  • wR(F2) = 0.244

  • S = 0.95

  • 10946 reflections

  • 327 parameters

  • 10 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.40 e Å-3

  • [Delta][rho]min = -0.48 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
N3-H3...O5 0.88 2.60 3.296 (4) 136
N3-H3...O6 0.88 1.82 2.684 (4) 166
N11-H11A...O3i 0.88 2.18 3.042 (4) 166
N11-H11B...O1Wii 0.88 2.13 2.989 (4) 164
N12-H12A...N21 0.88 2.04 2.915 (4) 174
N12-H12B...O2iii 0.88 2.25 2.904 (4) 131
N12-H12B...O6 0.88 2.58 3.260 (4) 135
N13-H13A...N22iv 0.88 2.13 3.012 (4) 176
N13-H13B...O5 0.88 2.03 2.870 (4) 159
N23-H23...O2Wv 0.88 1.94 2.793 (4) 164
N31-H31A...O3Wvi 0.88 2.06 2.870 (4) 153
N31-H31B...O2iii 0.88 2.22 3.048 (4) 157
N32-H32A...N1vii 0.88 2.06 2.933 (4) 173
N32-H32B...O3viii 0.88 2.11 2.817 (4) 137
N33-H33A...N2 0.88 2.09 2.973 (4) 177
N33-H33B...O1Wii 0.88 2.19 2.850 (4) 132
N50-H50...O1iii 0.93 2.28 2.969 (4) 130
C55-H55A...O4ix 0.99 2.55 3.470 (5) 154
O1W-H1AW...O1x 0.84 (2) 2.02 (2) 2.856 (4) 172 (4)
O1W-H1BW...O2 0.84 (2) 1.98 (3) 2.775 (3) 157 (4)
O2W-H2AW...O3xi 0.83 (2) 2.57 (3) 3.265 (4) 143 (4)
O2W-H2AW...O4xi 0.83 (2) 2.38 (3) 3.168 (4) 159 (4)
O2W-H2BW...O4 0.81 (2) 2.08 (2) 2.812 (4) 150 (4)
O3W-H3AW...O4 0.84 (2) 1.95 (3) 2.768 (4) 163 (5)
O3W-H3BW...O5xi 0.83 (2) 1.96 (3) 2.773 (4) 165 (5)
Symmetry codes: (i) x, y, z-1; (ii) x+1, y, z-1; (iii) -x+1, -y+1, -z+1; (iv) x, y-1, z; (v) -x+2, -y+1, -z; (vi) -x+2, -y+1, -z+1; (vii) x, y+1, z; (viii) x, y+1, z-1; (ix) x-1, y, z; (x) -x, -y+1, -z+1; (xi) -x+2, -y, -z+1.

Data collection: X-AREA (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); cell refinement: X-AREA; data reduction: X-RED (Stoe & Cie, 2002[Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.]); program(s) used to solve structure: SHELXS86 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZL2565 ).


Acknowledgements

KH thanks the University of Hull for the award of a PhD studentship.

References

Childs, S. L., Stahly, G. P. & Park, A. (2007). Mol. Pharm. 4, 323-338.  [CSD] [CrossRef] [PubMed] [ChemPort]
Eppel, S. & Bernstein, J. (2009). Cryst. Growth Des. 9, 1683-1691.  [CSD] [CrossRef] [ChemPort]
Eshtiagh-Hosseini, H., Mahjobbizadeh, M., Mirzaei, M., Fromm, K. & Crochet, A. (2010). Eur. J. Chem. 1, 179-181.  [ChemPort]
Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262.  [CrossRef] [Web of Science] [IUCr Journals]
Froschauer, B. & Weil, M. (2012). Acta Cryst. E68, o2553-o2554.  [CSD] [CrossRef] [ChemPort] [IUCr Journals]
Hingerty, B. E., Einstein, J. R. & Wei, C. H. (1981). Acta Cryst. B37, 140-147.  [CSD] [CrossRef] [IUCr Journals]
Huczynski, A., Janczak, J. & Brzezinski, B. (2009). J. Mol. Struct. 922, 77-82.  [ChemPort]
Perpétuo, G. J. & Janczak, J. (2002). Acta Cryst. C58, o112-o114.  [CSD] [CrossRef] [IUCr Journals]
Perpetuo, G. J. & Janczak, J. (2003). Pol. J. Chem. 77, 1323-1328.  [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Stoe & Cie (2002). X-AREA, X-RED and X-SHAPE. Stoe & Cie, Darmstadt, Germany.


Acta Cryst (2013). E69, o1674-o1675   [ doi:10.1107/S1600536813028250 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.