supplementary materials


bg2520 scheme

Acta Cryst. (2013). E69, o1759    [ doi:10.1107/S1600536813030389 ]

N,N'-Dimethyl-N''-(trichloroacet­yl)phospho­ramide

V. Ovchynnikov

Abstract top

In the title compound, C4H9Cl3N3O2P or CCl3C(O)NHP(O)(NHCH3)2, the P atom has a strongly distorted tetra­hedral geometry due to the formation of intermolecular strong hydrogen bonds involving the N atoms. In the crystal, N-H...O=P and N-H...O=C hydrogen bonds connect the mol­ecules into a two-dimensional array parallel to (100). An intra­molecular P...O contact [P...O = 2.975 (3) Å] is observed. The CCl3 group is rotationally disordered, with occupancies of 0.60 (3) and 0.40 (3)

Introduction top

Carbacyl­amido­phosphates of the general formula RC(O)NHP(O)R'2 are potential new ligands for metal ions (Skopenko et al., 2004; Znovjyak et al., 2009; Gubina et al., 2009). Many of these compounds also show biological activity (Amirkhanov et al., 1996, Rebrova et al., 1984). This work reports the structure of N,N'-Di­methyl-N''-trichloracetyl­phospho­ramide (C4H9N3O2PCl3) (I).

Experimental top

Synthesis and crystallization top

The dichloranhydride of tri­chloro­acetyl­amido­phospho­ric acid was prepared according to the method reported by Kirsanov (Kirsanov & Derkach, 1956). The dioxane solution (200 ml) of dichloranhydride of tri­chloro­acetyl­amido­phospho­ric acid (27.9 g, 0.1 mol) was placed in a three-neck round-bottomed flask and cooled by ice to 268 K. Then the dry methyl­amine was bubbled through the dioxane solution of CCl3C(O)NHP(O)Cl2 under stirring until the solution became alkaline. The temperature was not allowed to rise above 278 K. The stirring was continued for 1 h and the solution was left under ambient conditions. H2NCH3·HCl was filtered off after 12 h and the filtrate was evaporated. The oily precipitate of I was added to acetone which led to the formation of a white crystalline powder (yield 80%). White crystals suitable for X-ray analysis were obtained from slow evaporation of a 2-propanol solution.

Refinement top

H atoms of methyl groups were placed at calculated positions and treated as riding on the parent atoms, with Uiso(H) = 1.5 Ueq(C). H atoms of the amide group were located in a difference Fourier map and and further refined with similarity restraints for d(N—H) and Uiso(H) = 1.2Ueq(N). The CCl3 group apperas rotationally disordered around the C1—C2 bond, with occupations of 0.60/0.40 (3)

Results and discussion top

In the title compound (I), the phospho­rus environment has a strong distorted tetra­hedral conformation due to the formation of strong N1—H1···O1 and N3—H3···O1 hydrogen bonds (Table 2, Fig.1). The N1—P—N3 angle has a value 98.72° and as a consequence there is an increase in the O1—P1—N3 and O1—P1—N1 angles (119.2° and 111.29°, respectively). The orientation of the C(O) and P(O) groups differs from the conformation of most CAF-ligands (Gubina & Amirkhanov, 2000), the angle between the O2C1N1 and N1PO1 planes having a value 57.3° (the pseudo-torsion angle O=C···P=O is -53.39°).

In the crystal, two inter­molecular N–H···O=P hydrogen bonds connect molecules into a chain and a third N—H···O=C hydrogen bond connects the chains into a 2D array parallel to (100) (Fig.2). An intra­molecular P···O contact is also present in the crystal [d(P···O) = 2.975 (3) Å], sorter than the sum of commonly accepted Van der Waals Radii (3.3 Å).

Related literature top

For the use of carbacylamidophosphates as potential new ligands for metal ions, see: Skopenko et al. (2004); Znovjyak et al. (2009); Yizhak et al. (2013); Gubina et al. (2009). For their biological activity, see: Amirkhanov et al. (1996); Rebrova et al. (1984). For P=O and C=O bond lengths, see: Mizrahi & Modro (1982); Amirkhanov et al. (1997); Gubina & Amirkhanov (2000). For the preparation of trichloroacetylamidophosphoric acid dichloranhydride, see: Kirsanov & Derkach (1956).

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1995); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1995); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title compound (I) showing the atom-numbering scheme and the formation of three type of hydrogen bonds (dashed lines). Displacement ellipsoids drawn at a 30% probability level.
[Figure 2] Fig. 2. Packing view of (I) along the b axis. Only the major fraction of the CCl3 group has been represented.
N,N'-Dimethyl-N''-(trichloroacetyl)phosphoramide top
Crystal data top
C4H9Cl3N3O2PF(000) = 544
Mr = 268.46Dx = 1.583 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2348 reflections
a = 10.231 (2) Åθ = 2.0–27.1°
b = 8.754 (2) ŵ = 0.93 mm1
c = 12.826 (3) ÅT = 293 K
β = 101.27 (3)°Block, colorless
V = 1126.6 (4) Å30.4 × 0.3 × 0.3 mm
Z = 4
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.060
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.0°
Graphite monochromatorh = 1212
ω/Θ scansk = 010
3806 measured reflectionsl = 1515
1908 independent reflections3 standard reflections every 200 reflections
1419 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.077Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.195H atoms treated by a mixture of independent and constrained refinement
S = 1.08 w = 1/[σ2(Fo2) + (0.1369P)2]
where P = (Fo2 + 2Fc2)/3
1908 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.82 e Å3
33 restraintsΔρmin = 0.77 e Å3
Crystal data top
C4H9Cl3N3O2PV = 1126.6 (4) Å3
Mr = 268.46Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.231 (2) ŵ = 0.93 mm1
b = 8.754 (2) ÅT = 293 K
c = 12.826 (3) Å0.4 × 0.3 × 0.3 mm
β = 101.27 (3)°
Data collection top
Enraf–Nonius CAD-4
diffractometer
Rint = 0.060
3806 measured reflectionsθmax = 25.0°
1908 independent reflections3 standard reflections every 200 reflections
1419 reflections with I > 2σ(I) intensity decay: 1%
Refinement top
R[F2 > 2σ(F2)] = 0.077H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.195Δρmax = 0.82 e Å3
S = 1.08Δρmin = 0.77 e Å3
1908 reflectionsAbsolute structure: ?
157 parametersAbsolute structure parameter: ?
33 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
P10.55195 (8)0.17846 (12)0.16971 (7)0.0379 (4)
Cl10.0184 (6)0.1759 (10)0.0571 (8)0.098 (2)0.60 (3)
Cl20.1528 (7)0.2717 (16)0.2675 (4)0.108 (2)0.60 (3)
Cl30.1588 (6)0.4570 (7)0.0816 (9)0.114 (3)0.60 (3)
Cl1A0.0175 (8)0.1557 (17)0.0770 (15)0.108 (5)0.40 (3)
Cl2A0.1466 (9)0.321 (3)0.2554 (10)0.134 (5)0.40 (3)
Cl3A0.1524 (15)0.434 (2)0.050 (2)0.185 (9)0.40 (3)
O10.5607 (3)0.0273 (4)0.2191 (3)0.0597 (8)
O20.2813 (3)0.0649 (4)0.0732 (3)0.0683 (10)
N10.3994 (3)0.2573 (4)0.1646 (3)0.0461 (8)
H10.396 (5)0.335 (5)0.197 (4)0.055*
N20.5807 (5)0.1646 (5)0.0515 (3)0.0668 (12)
H20.602 (6)0.080 (5)0.036 (5)0.080*
N30.6418 (3)0.3153 (4)0.2290 (3)0.0495 (9)
H30.605 (4)0.373 (6)0.263 (3)0.059*
C10.2872 (4)0.1851 (5)0.1188 (3)0.0508 (10)
C20.1579 (4)0.2697 (6)0.1287 (4)0.0724 (15)
C30.5757 (12)0.2923 (9)0.0197 (5)0.130 (4)
H3A0.64010.27810.06410.195*
H3B0.59540.38450.02080.195*
H3C0.48820.29940.06320.195*
C40.7862 (4)0.3127 (8)0.2458 (5)0.0814 (17)
H4A0.81710.40260.21520.122*
H4B0.81450.22360.21260.122*
H4C0.82260.31020.32070.122*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
P10.0356 (5)0.0399 (6)0.0419 (6)0.0050 (3)0.0166 (4)0.0026 (4)
Cl10.049 (3)0.089 (3)0.137 (4)0.0087 (18)0.028 (3)0.040 (3)
Cl20.069 (3)0.172 (6)0.090 (3)0.021 (3)0.0296 (16)0.044 (4)
Cl30.059 (2)0.058 (2)0.198 (5)0.0179 (14)0.041 (3)0.004 (3)
Cl1A0.037 (3)0.109 (7)0.176 (9)0.002 (3)0.017 (4)0.075 (6)
Cl2A0.040 (3)0.161 (9)0.208 (11)0.018 (4)0.043 (4)0.130 (8)
Cl3A0.116 (7)0.096 (8)0.292 (17)0.032 (5)0.084 (9)0.022 (9)
O10.0463 (14)0.0482 (19)0.086 (2)0.0032 (12)0.0153 (13)0.0251 (16)
O20.0524 (17)0.062 (2)0.087 (2)0.0047 (14)0.0037 (15)0.0299 (18)
N10.0347 (15)0.053 (2)0.0496 (17)0.0054 (14)0.0070 (12)0.0148 (16)
N20.103 (3)0.050 (3)0.060 (2)0.004 (2)0.049 (2)0.0094 (19)
N30.0321 (16)0.061 (2)0.059 (2)0.0007 (13)0.0171 (13)0.0123 (17)
C10.045 (2)0.051 (3)0.055 (2)0.0054 (16)0.0051 (17)0.0146 (19)
C20.039 (2)0.072 (4)0.099 (4)0.006 (2)0.005 (2)0.034 (3)
C30.263 (11)0.083 (5)0.062 (3)0.001 (6)0.076 (5)0.006 (3)
C40.038 (2)0.090 (4)0.119 (5)0.008 (2)0.023 (2)0.016 (3)
Geometric parameters (Å, º) top
P1—O11.462 (3)N1—H10.81 (3)
P1—N21.605 (4)N2—C31.437 (8)
P1—N31.608 (4)N2—H20.81 (3)
P1—N11.696 (3)N3—C41.451 (5)
Cl1—C21.744 (6)N3—H30.81 (3)
Cl2—C21.791 (7)C1—C21.544 (6)
Cl3—C21.748 (7)C3—H3A0.9600
Cl1A—C21.768 (8)C3—H3B0.9600
Cl2A—C21.710 (9)C3—H3C0.9600
Cl3A—C21.753 (9)C4—H4A0.9600
O2—C11.199 (5)C4—H4B0.9600
N1—C11.342 (5)C4—H4C0.9600
O1—P1—N2109.5 (2)C1—C2—Cl3A106.1 (7)
O1—P1—N3119.3 (2)Cl2A—C2—Cl3A109.4 (7)
N2—P1—N3108.0 (2)Cl1—C2—Cl3A98.8 (8)
O1—P1—N1111.30 (18)C1—C2—Cl1A110.2 (4)
N2—P1—N1109.4 (2)Cl2A—C2—Cl1A107.6 (5)
N3—P1—N198.72 (18)Cl3—C2—Cl1A117.3 (7)
C1—N1—P1121.8 (3)Cl3A—C2—Cl1A108.4 (6)
C1—N1—H1120 (3)C1—C2—Cl2106.2 (4)
P1—N1—H1118 (3)Cl1—C2—Cl2110.4 (5)
C3—N2—P1123.4 (4)Cl3—C2—Cl2109.7 (5)
C3—N2—H2122 (4)Cl3A—C2—Cl2124.1 (9)
P1—N2—H2114 (4)Cl1A—C2—Cl2101.5 (6)
C4—N3—P1122.0 (4)N2—C3—H3A109.5
C4—N3—H3120 (3)N2—C3—H3B109.5
P1—N3—H3116 (4)H3A—C3—H3B109.5
O2—C1—N1125.7 (4)N2—C3—H3C109.5
O2—C1—C2119.9 (4)H3A—C3—H3C109.5
N1—C1—C2114.3 (4)H3B—C3—H3C109.5
C1—C2—Cl2A115.0 (6)N3—C4—H4A109.5
C1—C2—Cl1110.9 (4)N3—C4—H4B109.5
Cl2A—C2—Cl1115.0 (5)H4A—C4—H4B109.5
C1—C2—Cl3111.0 (4)N3—C4—H4C109.5
Cl2A—C2—Cl395.1 (8)H4A—C4—H4C109.5
Cl1—C2—Cl3108.6 (5)H4B—C4—H4C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (3)2.00 (4)2.782 (5)164 (5)
N3—H3···O1i0.81 (3)2.21 (4)2.953 (4)153 (4)
N2—H2···O2ii0.81 (3)2.38 (4)3.077 (5)146 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.81 (3)2.00 (4)2.782 (5)164 (5)
N3—H3···O1i0.81 (3)2.21 (4)2.953 (4)153 (4)
N2—H2···O2ii0.81 (3)2.38 (4)3.077 (5)146 (6)
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y, z.
references
References top

Amirkhanov, V., Ovchynnikov, V., Glowiak, T. & Kozlowski, H. (1997). Z. Naturforsch. Teil B, 52, 1331–1336.

Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Masalik, L. (1996). Acta Phys. Pol. A, 90, 455–460.

Enraf–Nonius (1995). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Gubina, K. & Amirkhanov, V. (2000). Z. Naturforsch. Teil B, 55, 1015–1019.

Gubina, K., Maslov, O., Trush, E., Trush, V., Ovchynnikov, V., Shishkina, S. & Amirkhanov, V. (2009). Polyhedron, 28, 2661–2666.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim. 26, 2009–2014.

Mizrahi, V. & Modro, T. (1982). Cryst. Struct. Commun. 11, 627–631.

Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1984). Dokl. Akad. Nauk SSSR, 274, 328–332.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Skopenko, V., Amirkhanov, V., Silva, T., Vasilchenko, I., Anpilova, E. & Garnovskii, A. (2004). Usp. Khim. 73, 797–814.

Yizhak, R., Znovjyak, K., Ovchynnikov, V., Sliva, T., Konovalova, I., Medviediev, V., Shishkin, O. & Amirkhanov, V. (2013). Polyhedron, 62, 293–299.

Znovjyak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.