[Journal logo]

Volume 69 
Part 12 
Page o1756  
December 2013  

Received 21 October 2013
Accepted 5 November 2013
Online 9 November 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.002 Å
R = 0.040
wR = 0.101
Data-to-parameter ratio = 14.7
Details
Open access

exo-1,7-Dimethyl-4-phenyl-10-oxa-4-aza­tri­cyclo­[5.2.1.02,6]dec-8-ene-3,5-dione

aFacultad de Ciencias Químicas, Universidad de Colima, Km 9 Carretera Colima-Coquimatlán, Apartado Postal 29000, Coquimatlán, Colima, Mexico, and bFacultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, México D.F., Mexico
Correspondence e-mail: armandop@ucol.mx

The title compound, C16H15NO3, consists of an oxabicycle fused to an N-phenyl-substituted pyrrolidine ring anti to the double bond, affording the exo isomer. In the oxabicycle system, the six-membered ring presents a boat conformation, while the heterocyclic rings show envelope conformations with the O atom projected out of the plane. In the crystal, adjacent mol­ecules are linked via weak C-H...O hydrogen bonds, forming chains propagating along the a-axis direction. The chains are linked by C-H...[pi] inter­actions, forming two-dimensional networks lying parallel to the ac plane.

Related literature

Monomeric norbornene derivatives synthesized by Diels-Alder reactions have attracted great attention due to the attractive optical, thermal, and electrochemical properties of the resulting polymers, see: Choi et al. (2010[Choi, M.-C., Hwan, J.-C., Kim, C., Kim, Y. & Ha, C.-S. (2010). J. Polym. Sci. Part A Polym. Chem. 48, 5189-5197.]); Khosravi & Al-Hajaji (1998[Khosravi, E. & Al-Hajaji, A. A. (1998). Polymer, 39, 5619-5625.]). For related structures, see: Li (2010[Li, J. (2010). Acta Cryst. E66, o3238.], 2011[Li, J. (2011). Acta Cryst. E67, o588.]); Jarosz et al. (2001[Jarosz, S., Mach, M., Szewczyk, K., Skóra, S. & Ciunik, Z. (2001). Eur. J. Org. Chem. pp. 2955-2964.]).

[Scheme 1]

Experimental

Crystal data
  • C16H15NO3

  • Mr = 269.29

  • Monoclinic, P 21 /c

  • a = 8.1267 (6) Å

  • b = 9.8570 (8) Å

  • c = 17.2099 (12) Å

  • [beta] = 93.564 (7)°

  • V = 1375.93 (18) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.09 mm-1

  • T = 298 K

  • 0.58 × 0.54 × 0.22 mm

Data collection
  • Agilent Xcalibur (Atlas, Gemini) diffractometer

  • Absorption correction: analytical (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.958, Tmax = 0.983

  • 6009 measured reflections

  • 2709 independent reflections

  • 2104 reflections with I > 2[sigma](I)

  • Rint = 0.019

Refinement
  • R[F2 > 2[sigma](F2)] = 0.040

  • wR(F2) = 0.101

  • S = 1.02

  • 2709 reflections

  • 184 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.24 e Å-3

  • [Delta][rho]min = -0.16 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C15-C20 phenyl ring.

D-H...A D-H H...A D...A D-H...A
C5-H5...O14i 0.93 2.57 3.362 (2) 144
C10-H10B...Cg1i 0.96 2.95 3.8029 148
C12-H12B...Cg1ii 0.96 2.79 3.7287 167
Symmetry codes: (i) x-1, y, z; (ii) [x, -y-{\script{1\over 2}}, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2487 ).


References

Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Choi, M.-C., Hwan, J.-C., Kim, C., Kim, Y. & Ha, C.-S. (2010). J. Polym. Sci. Part A Polym. Chem. 48, 5189-5197.  [CrossRef] [ChemPort]
Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Jarosz, S., Mach, M., Szewczyk, K., Skóra, S. & Ciunik, Z. (2001). Eur. J. Org. Chem. pp. 2955-2964.  [CrossRef]
Khosravi, E. & Al-Hajaji, A. A. (1998). Polymer, 39, 5619-5625.  [CrossRef] [ChemPort]
Li, J. (2010). Acta Cryst. E66, o3238.  [CSD] [CrossRef] [IUCr Journals]
Li, J. (2011). Acta Cryst. E67, o588.  [CSD] [CrossRef] [IUCr Journals]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1756  [ doi:10.1107/S1600536813030262 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.