supplementary materials


bh2488 scheme

Acta Cryst. (2013). E69, m645-m646    [ doi:10.1107/S1600536813030158 ]

Bis(5-amino-1H-tetra­zole-[kappa]N4)di­aqua­(oxalato-[kappa]2O1,O2)cadmium

Q. Liang, Y. Wang, Y. Zhao and G. Cao

Abstract top

In the monomeric title complex, [Cd(C2O4)(CH3N5)2(H2O)2], the CdII ion exhibits a distorted octa­hedral coordination geometry, with the equatorial plane defined by two O atoms from an oxalate ligand and two N atoms from two 5-amino-1H-tetra­zole ligands; the axial sites are occupied by two water mol­ecules, with longer Cd-O bond lengths. An intra­molecular N-H...O hydrogen bond occurs. In the crystal, N-H...O as well as O-H...O and O-H...N hydrogen bonds (some of which are bifurcated) link the complex mol­ecules into a three-dimensional network.

Comment top

5-Amino-tetrazole (atz), as multifunctional small molecular tetrazolate ligands, is isosteric with the carboxylate group and has five binding sites (one amino group and four imino-nitrogen atoms). It has been used to construct some interesting MOFs (Wang et al., 2010; Yu et al., 2010; He et al., 2006; Wei et al., 2010). Oxalate (ox), on the other hand, is quite unique due to its function as a bis-bidentate ligand, and a number of its coordination compounds have been obtained, with rigid framework structures. So we attempted to use 5-amino-tetrazole and oxalate ions as mixed ligands to construct new frameworks (Wang et al., 2010; Zhai et al., 2007; García-Couceiro et al., 2005; Prasad et al., 2002). Herein we report on a new cadmium-atz-ox complex.

The title complex comprises one CdII ion, two atz ligands, one oxalate ligand and two aqua ligands (Fig. 1). The CdII center adopts an octahedral coordination geometry that is formed by two nitrogen atoms from two atz ligands, two oxygen atoms from the oxalate ligand, and two aqua ligands. The observed Cd—O and Cd—N bond distances and bond angles reveal usual values (Table 1). There are abundant hydrogen bonds in the crystal structure. Complex molecules pack into a three-dimensional supramolecular structure, via hydrogen bonding interactions (Fig. 2 and Table 2).

Related literature top

For background to five-membered heterocycle ligands in compounds with metal-organic framework structures, see: Wang et al. (2010); Yu et al. (2010); He et al. (2006); Wei et al. (2010). For related complexes with mixed ligands, see: Zhai et al. (2007); García-Couceiro et al. (2005); Prasad et al. (2002).

Experimental top

The title compound was prepared by reaction of 5-amino-tetrazole (0.0425 g, 0.5 mmol), oxalate salt (0.0450 g, 0.5 mmol) and 3CdSO4.8H2O (0.128 g, 0.167 mmol) in water (5 mL). The pH of the mixture was carefully adjusted to 3.50. The solution was stirred for 8 h at 298 K, then filtered, and evaporated in air. Colorless crystals were obtained after 3 weeks.

Refinement top

H atoms bonded to N atoms were refined in idealized positions using the riding-model approximation, with N—H distances of 0.86 Å and Uiso(H) =1.2Ueq(N). H atoms bonded to O atoms were located in difference maps and treated as riding atoms, with a DFIX restraint for bond lengths: O—H = 0.84 (1) Å.

Computing details top

Data collection: CrystalClear (Rigaku, 2002); cell refinement: CrystalClear (Rigaku, 2002); data reduction: CrystalClear (Rigaku, 2002); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. View of the title complex showing 30% probability displacement ellipsoids. H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. Three-dimensional architecture constructed by hydrogen bonding interactions (dashed lines).
Bis(5-amino-1H-tetrazole-κN4)diaqua(oxalato-κ2O1,O2)cadmium top
Crystal data top
[Cd(C2O4)(CH3N5)2(H2O)2]F(000) = 1600
Mr = 406.62Dx = 2.228 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 25 reflections
a = 12.537 (3) Åθ = 12–18°
b = 6.6745 (13) ŵ = 1.86 mm1
c = 28.975 (6) ÅT = 298 K
V = 2424.6 (8) Å3Parallelepiped, colourless
Z = 80.28 × 0.16 × 0.12 mm
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
2785 independent reflections
Radiation source: fine-focus sealed tube2754 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
scintillation counter scansθmax = 27.5°, θmin = 3.3°
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
h = 1616
Tmin = 0.766, Tmax = 0.862k = 88
17764 measured reflectionsl = 3137
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079 w = 1/[σ2(Fo2) + (0.0398P)2 + 4.5635P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.002
2785 reflectionsΔρmax = 0.59 e Å3
207 parametersΔρmin = 0.45 e Å3
6 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0021 (2)
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cd(C2O4)(CH3N5)2(H2O)2]V = 2424.6 (8) Å3
Mr = 406.62Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 12.537 (3) ŵ = 1.86 mm1
b = 6.6745 (13) ÅT = 298 K
c = 28.975 (6) Å0.28 × 0.16 × 0.12 mm
Data collection top
Rigaku Saturn 724 CCD area-detector
diffractometer
2785 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2002)
2754 reflections with I > 2σ(I)
Tmin = 0.766, Tmax = 0.862Rint = 0.040
17764 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.029H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.079Δρmax = 0.59 e Å3
S = 1.07Δρmin = 0.45 e Å3
2785 reflectionsAbsolute structure: ?
207 parametersAbsolute structure parameter: ?
6 restraintsRogers parameter: ?
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.032292 (15)0.08331 (3)0.378971 (7)0.02283 (10)
O10.09336 (15)0.0416 (3)0.32754 (7)0.0282 (4)
O20.12553 (16)0.0700 (3)0.41712 (7)0.0288 (4)
O30.26641 (16)0.1150 (3)0.32234 (7)0.0290 (4)
O40.30105 (16)0.0484 (3)0.40574 (7)0.0317 (5)
O50.07474 (16)0.2449 (3)0.39948 (7)0.0287 (4)
O60.02085 (18)0.4282 (3)0.35582 (9)0.0328 (5)
N10.0171 (2)0.2487 (5)0.49906 (10)0.0371 (6)
H10.06810.21340.48090.045*
H20.03040.27710.52740.045*
N20.16782 (18)0.3183 (4)0.50717 (8)0.0262 (5)
H30.16820.35230.53580.031*
N30.25337 (19)0.3158 (4)0.47909 (8)0.0302 (5)
N40.22134 (18)0.2577 (4)0.43946 (8)0.0296 (5)
N50.11400 (17)0.2195 (4)0.44031 (8)0.0237 (5)
N60.0384 (2)0.2250 (5)0.25808 (11)0.0401 (7)
H50.01960.20500.27320.048*
H60.03580.27050.23030.048*
N70.14922 (19)0.1147 (4)0.32024 (8)0.0252 (5)
N80.2576 (2)0.1030 (4)0.32585 (9)0.0283 (5)
N90.3050 (2)0.1641 (4)0.28931 (9)0.0305 (5)
N100.22867 (19)0.2148 (4)0.25854 (8)0.0276 (5)
H40.23970.25890.23110.033*
C10.0822 (2)0.2592 (4)0.48324 (9)0.0231 (5)
C20.1335 (2)0.1851 (4)0.27786 (9)0.0236 (5)
C30.1872 (2)0.0488 (4)0.34327 (9)0.0218 (5)
C40.2064 (2)0.0313 (4)0.39325 (9)0.0224 (5)
H6B0.025 (3)0.438 (7)0.32696 (16)0.066 (17)*
H5A0.1389 (11)0.273 (6)0.4045 (16)0.072 (15)*
H5B0.053 (3)0.340 (5)0.3828 (14)0.070 (17)*
H6A0.0820 (16)0.462 (8)0.3648 (13)0.082 (18)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01893 (14)0.03021 (15)0.01935 (14)0.00328 (7)0.00053 (6)0.00210 (7)
O10.0196 (9)0.0405 (11)0.0245 (9)0.0034 (8)0.0032 (7)0.0081 (8)
O20.0209 (9)0.0432 (12)0.0224 (9)0.0046 (8)0.0000 (8)0.0083 (8)
O30.0211 (9)0.0408 (11)0.0251 (10)0.0057 (8)0.0009 (8)0.0107 (9)
O40.0199 (9)0.0486 (12)0.0267 (10)0.0027 (9)0.0041 (8)0.0116 (9)
O50.0233 (10)0.0315 (10)0.0313 (11)0.0011 (8)0.0024 (8)0.0032 (9)
O60.0245 (10)0.0339 (12)0.0400 (14)0.0040 (9)0.0021 (9)0.0041 (10)
N10.0216 (12)0.0588 (17)0.0308 (13)0.0081 (12)0.0068 (10)0.0121 (13)
N20.0216 (11)0.0365 (13)0.0203 (11)0.0014 (9)0.0010 (8)0.0057 (9)
N30.0193 (11)0.0428 (14)0.0286 (12)0.0040 (10)0.0012 (9)0.0057 (11)
N40.0193 (11)0.0418 (13)0.0278 (12)0.0048 (10)0.0013 (9)0.0040 (11)
N50.0174 (10)0.0307 (11)0.0230 (11)0.0036 (9)0.0007 (8)0.0042 (9)
N60.0311 (14)0.0528 (17)0.0364 (15)0.0050 (12)0.0071 (11)0.0145 (14)
N70.0218 (11)0.0310 (12)0.0227 (11)0.0009 (9)0.0021 (9)0.0040 (9)
N80.0227 (11)0.0332 (12)0.0289 (12)0.0009 (9)0.0010 (10)0.0016 (10)
N90.0266 (12)0.0330 (12)0.0319 (13)0.0003 (10)0.0041 (10)0.0016 (10)
N100.0293 (12)0.0308 (12)0.0228 (11)0.0019 (10)0.0056 (9)0.0031 (10)
C10.0204 (12)0.0257 (12)0.0231 (12)0.0018 (10)0.0006 (10)0.0017 (10)
C20.0240 (12)0.0227 (12)0.0240 (12)0.0010 (10)0.0013 (10)0.0007 (10)
C30.0220 (12)0.0241 (12)0.0195 (12)0.0005 (10)0.0016 (9)0.0012 (10)
C40.0229 (12)0.0239 (12)0.0203 (12)0.0021 (10)0.0018 (10)0.0034 (10)
Geometric parameters (Å, º) top
Cd1—N52.244 (2)N2—C11.337 (3)
Cd1—N72.256 (2)N2—N31.346 (3)
Cd1—O22.268 (2)N2—H30.8600
Cd1—O12.323 (2)N3—N41.277 (3)
Cd1—O52.331 (2)N4—N51.370 (3)
Cd1—O62.489 (2)N5—C11.333 (3)
O1—C31.263 (3)N6—C21.350 (4)
O2—C41.254 (3)N6—H50.8600
O3—C31.244 (3)N6—H60.8600
O4—C41.246 (3)N7—C21.329 (3)
O5—H5A0.8400 (11)N7—N81.371 (3)
O5—H5B0.8400 (11)N8—N91.281 (3)
O6—H6B0.8399 (11)N9—N101.351 (4)
O6—H6A0.8399 (11)N10—C21.332 (3)
N1—C11.329 (4)N10—H40.8600
N1—H10.8600C3—C41.562 (4)
N1—H20.8600
N5—Cd1—N7105.27 (9)N4—N3—N2107.3 (2)
N5—Cd1—O291.61 (7)N3—N4—N5110.4 (2)
N7—Cd1—O2159.74 (8)C1—N5—N4105.9 (2)
N5—Cd1—O1164.37 (7)C1—N5—Cd1133.10 (18)
N7—Cd1—O189.43 (8)N4—N5—Cd1120.62 (17)
O2—Cd1—O172.96 (7)C2—N6—H5120.0
N5—Cd1—O594.28 (8)C2—N6—H6120.0
N7—Cd1—O597.54 (8)H5—N6—H6120.0
O2—Cd1—O592.18 (8)C2—N7—N8106.0 (2)
O1—Cd1—O588.92 (8)C2—N7—Cd1129.31 (19)
N5—Cd1—O687.76 (8)N8—N7—Cd1123.32 (18)
N7—Cd1—O683.38 (8)N9—N8—N7110.1 (2)
O2—Cd1—O686.23 (8)N8—N9—N10107.3 (2)
O1—Cd1—O688.71 (8)C2—N10—N9108.6 (2)
O5—Cd1—O6177.45 (7)C2—N10—H4125.7
C3—O1—Cd1114.45 (17)N9—N10—H4125.7
C4—O2—Cd1116.39 (17)N1—C1—N5126.3 (3)
Cd1—O5—H5A118 (3)N1—C1—N2126.1 (3)
Cd1—O5—H5B119 (3)N5—C1—N2107.6 (2)
H5A—O5—H5B103.6 (3)N7—C2—N10108.0 (2)
Cd1—O6—H6B111 (3)N7—C2—N6126.3 (3)
Cd1—O6—H6A114 (4)N10—C2—N6125.7 (3)
H6B—O6—H6A103.6 (3)O3—C3—O1125.5 (2)
C1—N1—H1120.0O3—C3—C4116.8 (2)
C1—N1—H2120.0O1—C3—C4117.7 (2)
H1—N1—H2120.0O4—C4—O2126.2 (3)
C1—N2—N3108.8 (2)O4—C4—C3116.6 (2)
C1—N2—H3125.6O2—C4—C3117.2 (2)
N3—N2—H3125.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O5i0.862.203.027 (4)161
N1—H1···O20.862.202.985 (3)151
N2—H3···O4ii0.861.862.704 (3)167
N10—H4···O3iii0.861.792.647 (3)172
N6—H6···O1iii0.862.213.009 (4)154
O5—H5A···N4iv0.842.032.807 (3)153 (4)
O5—H5A···N3iv0.84 (2)2.62 (4)3.183 (3)126 (4)
O5—H5B···O6v0.84 (4)1.97 (3)2.792 (3)167 (4)
O6—H6A···O3vi0.84 (3)2.32 (3)2.853 (3)122 (4)
O6—H6A···O4vi0.84 (3)1.97 (3)2.779 (3)161 (3)
O6—H6B···N60.84 (1)2.58 (3)3.227 (4)135 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x, y1, z; (vi) x1/2, y+1/2, z.
Selected bond lengths (Å) top
Cd1—N52.244 (2)Cd1—O12.323 (2)
Cd1—N72.256 (2)Cd1—O52.331 (2)
Cd1—O22.268 (2)Cd1—O62.489 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O5i0.862.203.027 (4)161.4
N1—H1···O20.862.202.985 (3)151.0
N2—H3···O4ii0.861.862.704 (3)166.9
N10—H4···O3iii0.861.792.647 (3)171.7
N6—H6···O1iii0.862.213.009 (4)153.5
O5—H5A···N4iv0.842.032.807 (3)153 (4)
O5—H5A···N3iv0.84 (2)2.62 (4)3.183 (3)126 (4)
O5—H5B···O6v0.84 (4)1.97 (3)2.792 (3)167 (4)
O6—H6A···O3vi0.84 (3)2.32 (3)2.853 (3)122 (4)
O6—H6A···O4vi0.84 (3)1.97 (3)2.779 (3)161 (3)
O6—H6B···N60.84 (1)2.58 (3)3.227 (4)135 (4)
Symmetry codes: (i) x, y, z+1; (ii) x+1/2, y+1/2, z+1; (iii) x, y+1/2, z+1/2; (iv) x+1/2, y1/2, z; (v) x, y1, z; (vi) x1/2, y+1/2, z.
Acknowledgements top

The authors are grateful for financial support from the Natural Science Fund for Young Scholars of Fujian Province (grant No. 2011 J05018).

references
References top

García-Couceiro, U., Olea, D., Castillo, O., Luque, A., Román, P., de Pablo, P. J., Gómez-Herrero, J. & Zamora, F. (2005). Inorg. Chem. 44, 8343–8348.

He, X., Lu, C.-Z. & Yuan, D.-Q. (2006). Inorg. Chem. 45, 5760–5766.

Prasad, P. A., Neeraj, S., Vaidhyanathan, R. & Natarajan, S. (2002). J. Solid State Chem. 166, 128–141.

Rigaku (2002). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, T.-W., Liu, D.-S., Huang, C.-C., Sui, Y., Huang, X.-H., Chen, J.-Z. & You, X.-Z. (2010). Cryst. Growth Des. 10, 3429–3435.

Wei, G., Shen, Y.-F., Li, Y.-R. & Huang, X.-C. (2010). Inorg. Chem. 49, 9191–9199.

Yu, Q., Zeng, Y.-F., Zhao, J.-P., Yang, Q. & Bu, X.-H. (2010). Cryst. Growth Des. 10, 1878–1884.

Zhai, Q.-G., Lu, C.-Z., Wu, X.-Y. & Batten, S. R. (2007). Cryst. Growth Des. 7, 2332–2342.