Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$Na_{3}Co_{2}(As_{0.52}P_{0.48})O_{4}(As_{0.95}P_{0.05})_{2}O_{7}$

Youssef Ben Smida, Abderrahmen Guesmi, Mohamed Faouzi Zid* and Ahmed Driss

Laboratoire de Matériaux et Cristallochimie. Faculté des Sciences de Tunis. Université de Tunis ElManar, 2092 Manar II Tunis, Tunisia Correspondence e-mail: faouzi.zid@fst.rnu.tn

Received 15 November 2013; accepted 23 November 2013

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (Co–O) = 0.003 Å; disorder in main residue; R factor = 0.020; wR factor = 0.049; data-to-parameter ratio = 10.0

The title compound, trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate), was prepared by a solid-state reaction. It is isostructural with Na₃Co₂AsO₄As₂O₇. The framework shows the presence of $CoX2_2O_{12}$ (X2 is statistically disordered with As_{0.95}P_{0.05}) units formed by sharing corners between $ColO_6$ octahedra and $X2_2O_7$ groups. These units form layers perpendicular to [010]. Co2O₆ octahedra and $X1O_4$ (X1 = As_{0.54}P_{0.46}) tetrahedra form Co2X1O₈ chains parallel to [001]. Cohesion between layers and chains is ensured by the $X2_2O_7$ groups, giving rise to a threedimensional framework with broad tunnels, running along the a- and c-axis directions, in which the Na⁺ ions reside. The two Co^{2+} cations, the X1 site and three of the seven O atoms lie on special positions, with site symmetries 2 and m for the Co, m for the X1, and 2 and $m (\times 2)$ for the O sites. One of two Na atoms is disordered over three special positions [occupancy ratios 0.877 (10):0.110 (13):0.066 (9)] and the other is in a general position with full occupancy. A comparison between structures such as K₂CdP₂O₇, α-NaTiP₂O₇ and K₂MoO₂P₂O₇ is made. The proposed structural model is supported by charge-distribution (CHARDI) analysis and bond-valencesum (BVS) calculations. The distortion of the coordination polyhedra is analyzed by means of the effective coordination number.

Related literature

For isotypic structures, see: Ben Smail & Jouini (2005); Guesmi & Driss (2012). For related structures, see: Ben Smail & Jouini (2004); Boughzala et al. (1997); Faggiani & Calvo (1976); Leclaire et al. (1988); Geoffroy et al. (2011); Rissouli et al. (1996); Zid et al. (2003). For bond-valence analysis, see: Brown (2002); Adams (2003). For the charge distribution method, see: Nespolo et al. (2001); Nespolo (2001); Guesmi et al. (2006).

 $\beta = 120.425 \ (9)^{\circ}$

Z = 4

V = 929.21 (17) Å³

Mo $K\alpha$ radiation

 $0.26 \times 0.18 \times 0.16 \; \mathrm{mm}$

1052 independent reflections

974 reflections with $I > 2\sigma(I)$

intensity decay: 1.4%

2 standard reflections every 120

 $\mu = 12.44 \text{ mm}^{-1}$ T = 298 K

 $R_{\rm int} = 0.027$

reflections

Experimental

Crystal data

$Na_{2}Co_{2}(As_{2}, P_{2}, P_{3})O_{2}$
A3C02(A30.521 0.48)04-
$(As_{0.95}P_{0.05})_2O_7$
$M_r = 562.32$
Monoclinic, C2/m
a = 10.3982 (9) Å
b = 16.087 (2) Å
c = 6.4421 (6) Å

Data collection

Enraf-Nonius CAD-4 diffractometer Absorption correction: ψ scan (North et al., 1968) $T_{\min} = 0.077, \ T_{\max} = 0.138$ 2212 measured reflections

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.020$	105 parameters
$wR(F^2) = 0.049$	3 restraints
S = 1.15	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
1052 reflections	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Data collection: CAD-4 EXPRESS (Duisenberg, 1992; Macíček & Yordanov, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2232).

References

- Adams, S. (2003). softBV. University of Göttingen, Germany. http://kristall. uni-mki.gwdg.de/softBV/
- Ben Smail, R. & Jouini, T. (2004). Acta Cryst. E60, i1-i2.
- Ben Smail, R. & Jouini, T. (2005). Anal. Chem. 30, 119-132.
- Boughzala, H., Driss, A. & Jouini, T. (1997). Acta Cryst. C53, 3-5.
- Brandenburg, K. & Putz, H. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany
- Brown, I. D. (2002). The Chemical Bond in Inorganic Chemistry The Bond Valence Model. IUCr Monographs on Crystallography, No. 12. Oxford University Press.
- Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
- Faggiani, R. & Calvo, C. (1976). Can. J. Chem. 54, 3319-3324.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Geoffroy, H., Anubhav, J., Shyue Ping, O., Byoungwoo, K., Charles, M., Robert, D. & Gerbrand, C. (2011). Chem. Mater. 23, 3495-3508.
- Guesmi, A. & Driss, A. (2012). Acta Cryst. E68, i58.
- Guesmi, A., Nespolo, M. & Driss, A. (2006). J. Solid State Chem. 179, 2466-2471.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Leclaire, A., Benmoussa, A., Borel, M. M., Grandin, A. & Raveau, B. (1988). J.
- Solid State Chem. 77, 299-305.
- Macíček, J. & Yordanov, A. (1992). J. Appl. Cryst. 25, 73-80.
- Nespolo, M. (2001). CHARDI-IT, CRM². University Henri Poincaré Nancy I, France
- Nespolo, M., Ferraris, G., Ivaldi, G. & Hoppe, R. (2001). Acta Cryst. B57, 652-664.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Rissouli, K., Benkhouja, K., Sadel, A., Bettach, M., Zahir, M., Giorgi, M. & Pierrot, M. (1996). *Acta Cryst.* C52, 2960–2963.
Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925. Zid, M. F., Driss, A. & Jouini, T. (2003). Acta Cryst. E59, i65–i67.

supporting information

Acta Cryst. (2013). E69, i85-i86 [doi:10.1107/S1600536813032029]

$Na_{3}Co_{2}(As_{0.52}P_{0.48})O_{4}(As_{0.95}P_{0.05})_{2}O_{7}$

Youssef Ben Smida, Abderrahmen Guesmi, Mohamed Faouzi Zid and Ahmed Driss

S1. Comment

La recherche de nouveaux matériaux à structures tridimensionnelles, ayant des larges tunnels utilisés pour des applications électrochimiques, constitue un domaine d'intense activité en chimie des solides. *L*'attention de plusieurs équipes s'est portée sur les phosphates doubles de métaux de transition et de cations monovalents présentant une stabilité thermique remarquable (Geoffroy *et al.*, 2011). Dans des travaux antérieurs, il a été montré qu'il existe une grande ressemblance structurale entre les phosphates et les arséniates ainsi que la possibilité d'une substitution de Phosphore par l'Arsenic et inversement (Ben Smail & Jouini, 2004, 2005; Boughzala *et al.*, 1997). Cependant la particularité structurale des arséniates vient de la possibilité d'avoir un environnement octaédrique chez l'Arsenic (Guesmi *et al.*, 2006) engendrant une richesse structurale à la famille des arséniates qui demeure peu étudiée.

Dans ce contexte, nous avons tenté d'explorer les systèmes A-Co-As/P-O (A=cation monovalent) par réaction à l'état solide. Cette investigation nous a permis d'isoler une nouvelle phase de formule $Na_3Co_2(As_{0.52}P_{0.48})O_4(As_{0.95}P_{0.05})_2O_7$ isostructurale à Na₃Co₂AsO₄As₂O₇ (Guesmi & Driss, 2012) et Na₃Ni₂(As_{0.1}P_{0.9})O₄(As_{1.3}P_{0.7})O₇ (Ben Smail & Jouini, 2005). L'unité formulaire de ce matériau (Fig. 1) est constituée de deux octaèdres CoO₆, un tétraèdre M1O₄ (M1=As_{0.52}P_{0.48}), un groupement M2₂O₇ (M2=As_{0.95}P_{0.05}) et trois atomes de sodium où l'un est statistiquement désordonné sur trois positions. L'examen de la charpente anionique révèle la présence de l'unité linéaire $Co1M2_2O_{12}$ constituée par un octaèdre Co1O₆ partageant un seul sommet avec un groupement $M2_2O_7$ (Fig. 2). Ces unités se regroupent entre elles au moyen de ponts mixtes pour conduire à des couches disposées perpendiculairement à la direction [010] (Fig. 2). Les octaèdres $Co2O_6$ et les tétraèdres M1O₄ se lient par partage de sommets pour former des chaînes classiques $Co2M1O_8$ orientées selon la direction [001] (Fig. 3). La disposition *cis* des tétraèdres M1O₄ permet la jonction de ces chaînes par mise en commun d'arrêtes entre polyèdres de nature différente pour former un nouveau type de doubles chaînes de formulation Co2₂M1₂O₁₃ (Fig. 3). La cohésion entre les couches et les doubles chaînes est assurée moyennant les groupements M2₂O₇ par mise en commun de sommets non engagés dans les couches. Il en résulte une structure tridimensionnelle (Fig. 4) avant des larges tunnels disposés respectivement selon les directions [100] et [001] et des autres moins larges orientés selon la direction [110]. Les ions Na1 occupant une position générale et présentant un polyèdre déformé, apparaissent à l'intersection des tunnels disposés selon les directions [100] et [110] (Fig. 5a). Par contre les ions Na2 sont localisés à l'intersection des tunnels orientés selon les directions [001] et [110] (Fig. 5b).

La comparaison de la structure de Na₃Co₂(As_{0,52}P_{0,48})O₄(As_{0,95}P_{0,05})₂O₇ avec des travaux antérieurs et renfermant principalement l'unité linéaire MX_2O_{12} (M = métal bi ou trivalent, X = P, As) révèle une certaine filiation avec les matériaux K₂CdP₂O₇, K₂CaAs₂O₇ (Faggiani & Calvo, 1976) et α -NaTiP₂O₇ (Leclaire *et al.*, 1988). En effet, les unités MX_2O_{12} se connectent par partage de sommets pour conduire à des couches qui à leurs tours se lient par ponts mixtes dans le trois directions formant ainsi des structures tridimensionnelles dans K₂CdP₂O₇, K₂CaAs₂O₇ et α -NaTiP₂O₇. Cependant dans les matériaux Li₂Ni₃(P₂O₇)₂ (Rissouli *et al.*, 1996), K₂MoO₂P₂O₇ (Zid *et al.*, 2003) les groupements diphosphates forment avec les métaux des unités cycliques de type MP₂O₁₁. Ces dernières se connectent par partage des sommets entre polyèdres de nature differente pour conduire à des rubans formant une structure unidimensionnelle dans la phase $K_2MoO_2P_2O_7$. Dans la structure de $Li_2Ni_3(P_2O_7)_2$, les unités cycliques de type NiP_2O_{11} se connectent par arrêtes pour former des rubans qui se lient par partage de sommets dans le trois directions afin d'aboutir à une structure tridimentionnelle.

Le modèle structural proposé, particulièrement la distribution aux sites M1 et M2 et le désordre de l'atome de sodium Na2, est confirmé par les deux modèles de validation: la somme des valences de liaisons BVS (Brown, 2002; Adams, 2003) et la méthode de distribution de charge CHARDI (Nespolo *et al.*, 2001; Nespolo, 2001) (Table 1). Les valeurs de charges calculées Q(i) et de valences V(i) sont en bon accord avec les degrés d'oxydation pondérés par les taux d'occupation. Le facteur de dispersion σ_{cat} (Nespolo, 2001) qui mesure la déviation des charges cationiques calculées est égal à 6,4%. Pour les atomes d'oxygène, le facteur de dispersion σ_{ana} est égal à 11%. Un effet OUB (*Over-Under Bonding effect*) (Nespolo, 2001) est observé pour les deux atomes O2 et O4 avec des charges calculées respectivement égales à -1,829 et -2,190. Une explication de cet effet peut être attribuée à la mise en commun d'une arrête entre les polyèdres Co2O₆ et M1O₄ (Fig. 3). Ce type de jonction induit une forte répulsion cationique se repercutant sur les distances interatomiques et par conséquent sur les charges. Les polyèdres Co2O₆ et M1O₄ sont ainsi assez distordus avec des nombres de coordination effectifs respectivement égalux à ECoN(Co2)= 5,672 et ECoN(M1)= 3,966. Les distances, moyenne classique d_{moy} et arithmétique pondérée d_{med}, sont cependant très proches et sont respectivement égales à 2,125 Å et 2,122 Å pour Co2 et 1,611 Å et 1,610 Å pour M1.

S2. Experimental

La synthèse de la phase Na₃Co₂(As_{0,52}P_{0,48})O₄(As_{0,95}P_{0,05})₂O₇ a été réalisée dans un creuset en porcelaine. Les réactifs, Na₂CO₃ (Prolabo, 27778), Co(NO₃)₂·6H₂O (Fluka, 60832), NH₄H₂PO₄ (Scharlau, 62943) et NH₄H₂AsO₄ (préparé au laboratoire, ASTM 01–775), sont pris respectivement dans les rapports Na:Co:As:P égaux à 4:2:3:1. Le mélange finement broyé, est préchauffé lentement dans un four à moufle jusqu'à 623 K en vue d'éliminer NH₃, H₂O et NO₂. Après refroidissement et un broyage poussé, le produit formé est porté jusqu'à une température (973 K) proche de la fusion. Il est alors abandonné à cette température pendant 3 jours pour favoriser la germination et la croissance des cristaux. Le résidu final a subi en premier lieu un refroidissement lent (5°/h) jusqu'à 923 K puis rapide (50°/h) jusqu'à la température ambiante. Des cristaux de couleur rose, de taille suffisante pour les mesures des intensités, ont été séparés du flux par l'eau bouillante.

S3. Refinement

L'instruction SUMP est une contrainte linéaire autorisée par le programme d'affinement *SHELX*. Elle permet à deux atomes ou plus d'occuper le même site, avec la somme de taux d'occupation retenue comme une constante. Dans ce cas, avec l'instruction SUMP, on doit appliquer obligatoirement les contraintes: EXYZ et EADP. Ces dernières permettent d'attribuer aux atomes respectivement les mêmes coordonnées et facteurs d'agitation thermique.

L'utilization des instructions SUMP et EADP pour les couples d'ions As1/P1, As2/P2 et Na2A/Na2B/Na2C conduit à des ellipsoïdes bien définis. De plus, les densités d'électrons maximum et minimum restants dans la Fourier-différence sont acceptables et sont situées respectivements à 0,77 Å de Na1 et à 0,37 Å de Co2.

L'unité formulaire dans Na₃Co₂(As_{0,52}P_{0,48})O₄(As_{0,95}P_{0,05})₂O₇. Les ellipsoïdes sont définis avec 50% de probabilité. [*codes de symétrie*]: (i) x, -y + 1, z; (ii) x + 1/2, -y + 1/2, z; (iii) -x + 1/2, -y + 1/2, -z + 1; (iv) -x + 1, y, -z + 1; (v) -x + 1, -y + 1, -z + 1; (vi) -x + 1, -y + 1, -z + 2; (vii) -x, y, -z.

Figure 2

Vue d'une couche selon la direction [010] montrant la jonction entre l'octraèdre $Co1O_6$ et le groupement $M2_2O_7$ ($M2=As_{0.95}P_{0.05}$).

Vue de rubans selon la direction [011] montrant la mise en commun d'arrête entre l'octraèdre $Co2O_6$ et le tétraèdre $M1O_4$ ($M1=As_{0,52}P_{0,48}$).

Projection de la structure selon la direction [001].

Matérialisation de tunnels. (a): selon la direction [100]; (b): selon la direction [001].

Trisodium dicobalt(II) (arsenate/phosphate) (diarsenate/diphosphate)

F(000) = 1055 $D_x = 4.020 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 25 reflections $\theta = 10-15^{\circ}$ $\mu = 12.44 \text{ mm}^{-1}$ T = 298 K Driven mink
Prism, pink
$0.26 \times 0.18 \times 0.16 \text{ mm}$

Data collection

Enraf–Nonius CAD-4	1052 independent reflections		
diffractometer	974 reflections with $I > 2\sigma(I)$		
Radiation source: fine-focus sealed tube	$R_{int} = 0.027$		
Graphite monochromator	$\theta_{max} = 27.0^{\circ}, \theta_{min} = 2.5^{\circ}$		
$\omega/2\theta$ scans	$h = -13 \rightarrow 13$		
Absorption correction: ψ scan	$k = -20 \rightarrow 1$		
(North <i>et al.</i> , 1968)	$l = -8 \rightarrow 8$		
$T_{\min} = 0.077, T_{\max} = 0.138$	2 standard reflections every 120 reflections		
2212 measured reflections	intensity decay: 1.4%		
Refinement			
Refinement on F^2	Secondary atom site location: difference Fourier		
Least-squares matrix: full	map		
$R[F^2 > 2\sigma(F^2)] = 0.020$	$w = 1/[\sigma^2(F_o^2) + (0.012P)^2 + 5.1693P]$		
$wR(F^2) = 0.049$	where $P = (F_o^2 + 2F_c^2)/3$		
S = 1.15	$(\Delta/\sigma)_{max} < 0.001$		

1052 reflections $\Delta \rho_{max} = 0.61 \text{ e} \text{ Å}^{-3}$ 105 parameters $\Delta \rho_{min} = -0.61 \text{ e} \text{ Å}^{-3}$ 3 restraintsExtinction correction: SHELXL,Primary atom site location: structure-invariant
direct methods $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.00084 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
As1	0.61047 (7)	0.5000	0.82497 (11)	0.0066 (2)	0.519 (5)
P1	0.61047 (7)	0.5000	0.82497 (11)	0.0066 (2)	0.481 (6)
As2	0.11976 (4)	0.33459 (2)	0.26883 (6)	0.00837 (13)	0.953 (4)
P2	0.11976 (4)	0.33459 (2)	0.26883 (6)	0.00837 (13)	0.047 (4)
Col	0.5000	0.32278 (4)	0.5000	0.00767 (18)	
Co2	0.30246 (7)	0.5000	0.58620 (11)	0.00979 (18)	
01	0.2677 (3)	0.30726 (17)	0.2518 (4)	0.0159 (5)	
O2	0.4973 (3)	0.42032 (15)	0.7288 (4)	0.0125 (5)	
03	0.7294 (4)	0.5000	0.7420 (6)	0.0130 (7)	
O4	0.7069 (4)	0.5000	1.1130 (6)	0.0175 (8)	
05	0.1483 (3)	0.40165 (15)	0.4838 (4)	0.0137 (5)	
06	0.0000	0.3895 (2)	0.0000	0.0126 (7)	
O7	0.0195 (3)	0.25247 (17)	0.2544 (4)	0.0204 (6)	
Na1	0.1865 (3)	0.16850 (11)	0.0966 (3)	0.0443 (6)	
Na2A	0.0524 (3)	0.5000	0.7917 (8)	0.0361 (12)	0.871 (10)

supporting information

Na2B	0.0000	0.5000	0.5000	0.0361 (12)	0.111 (12)
Na2C	0.038 (4)	0.5000	0.643 (13)	0.0361 (12)	0.071 (9)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
As1	0.0072 (3)	0.0073 (4)	0.0058 (3)	0.000	0.0037 (3)	0.000
P1	0.0072 (3)	0.0073 (4)	0.0058 (3)	0.000	0.0037 (3)	0.000
As2	0.00761 (19)	0.0082 (2)	0.00724 (19)	-0.00078 (13)	0.00228 (14)	-0.00001 (13)
P2	0.00761 (19)	0.0082 (2)	0.00724 (19)	-0.00078 (13)	0.00228 (14)	-0.00001 (13)
Co1	0.0072 (3)	0.0082 (3)	0.0074 (3)	0.000	0.0036 (2)	0.000
Co2	0.0096 (3)	0.0113 (3)	0.0094 (3)	0.000	0.0055 (3)	0.000
01	0.0096 (11)	0.0173 (13)	0.0166 (12)	0.0020 (10)	0.0035 (10)	-0.0054 (10)
O2	0.0133 (11)	0.0115 (12)	0.0147 (11)	-0.0007 (10)	0.0086 (10)	-0.0013 (10)
O3	0.0176 (17)	0.0123 (17)	0.0101 (16)	0.000	0.0078 (14)	0.000
O4	0.0177 (18)	0.027 (2)	0.0113 (17)	0.000	0.0101 (15)	0.000
05	0.0154 (12)	0.0144 (12)	0.0121 (11)	-0.0043 (10)	0.0075 (10)	-0.0042 (10)
O6	0.0122 (15)	0.0100 (16)	0.0091 (14)	0.000	0.0008 (13)	0.000
O7	0.0276 (14)	0.0179 (13)	0.0121 (12)	-0.0130 (12)	0.0074 (11)	0.0016 (11)
Na1	0.0860 (17)	0.0175 (9)	0.0239 (9)	0.0096 (10)	0.0238 (10)	-0.0010 (7)
Na2A	0.0202 (14)	0.0243 (15)	0.054 (3)	0.000	0.0117 (15)	0.000
Na2B	0.0202 (14)	0.0243 (15)	0.054 (3)	0.000	0.0117 (15)	0.000
Na2C	0.0202 (14)	0.0243 (15)	0.054 (3)	0.000	0.0117 (15)	0.000

Geometric parameters (Å, °)

As1—O3	1.577 (4)	Na1—O1 ^{vii}	2.549 (3)
As1—O4	1.601 (3)	Na1—O7 ^{viii}	2.573 (3)
As1—O2	1.635 (2)	Na1—O2 ^{ix}	2.609 (3)
As1—O2 ⁱ	1.635 (2)	Na1—O5 ⁱⁱⁱ	2.613 (3)
As2—O1	1.656 (2)	Na1—O4 ^x	2.717 (2)
As2—O7	1.656 (3)	Na2A—O4 ^{vi}	2.255 (5)
As2—O5	1.659 (2)	Na2A—O6 ^{xi}	2.449 (4)
As2—O6	1.773 (2)	Na2A—O6 ^{xii}	2.449 (4)
Co1—O7 ⁱⁱ	2.082 (2)	Na2A—O5 ^{xiii}	2.501 (4)
Co1—O7 ⁱⁱⁱ	2.082 (2)	Na2A—O5 ^{xii}	2.501 (4)
Co1-01	2.131 (2)	Na2A—O3 ^{vi}	2.696 (5)
Co1-O1 ^{iv}	2.131 (2)	Na2B—O5 ^{xiii}	2.249 (2)
Co1—O2	2.163 (2)	Na2B—O5 ⁱ	2.249 (2)
Co1—O2 ^{iv}	2.163 (2)	Na2B—O5 ^{xii}	2.249 (2)
Co2—O3 ^v	1.967 (3)	Na2B—O4 ^{vi}	2.794 (4)
Co2—O4 ^{vi}	1.989 (4)	Na2B—O4 ^{xiv}	2.794 (4)
Co2—O5	2.106 (2)	Na2C—O4 ^{vi}	2.30 (4)
Co2—O5 ⁱ	2.106 (2)	Na2C—O5 ^{xiii}	2.31 (3)
Co2—O2 ⁱ	2.169 (2)	Na2C—O5 ^{xii}	2.31 (3)
Со2—О2	2.169 (2)	Na2C—O5 ⁱ	2.46 (5)
O3—As1—O4	104.73 (18)	O1 ^{iv} —Co1—O2	88.54 (10)

O3—As1—O2	114.16 (11)	O7 ⁱⁱ —Co1—O2 ^{iv}	82.19 (10)
O4—As1—O2	110.33 (11)	$O7^{iii}$ —Co1— $O2^{iv}$	168.43 (10)
O3—As1—O2 ⁱ	114.16 (11)	O1—Co1—O2 ^{iv}	88.54 (10)
O4—As1—O2 ⁱ	110.33 (11)	$O1^{iv}$ —Co1— $O2^{iv}$	101.27 (9)
O2—As1—O2 ⁱ	103.25 (17)	O2—Co1—O2 ^{iv}	86.97 (13)
O1—As2—O7	111.36 (14)	O3 ^v —Co2—O4 ^{vi}	169.21 (16)
O1—As2—O5	116.62 (12)	O3 ^v —Co2—O5	88.62 (9)
O7—As2—O5	114.01 (13)	O4 ^{vi} —Co2—O5	84.28 (10)
O1—As2—O6	106.49 (9)	O3 ^v —Co2—O5 ⁱ	88.62 (9)
O7—As2—O6	103.40 (12)	$O4^{vi}$ — $Co2$ — $O5^{i}$	84.28 (10)
O5—As2—O6	103.39 (12)	O5—Co2—O5 ⁱ	97.39 (14)
O7 ⁱⁱ —Co1—O7 ⁱⁱⁱ	108.88 (16)	$O3^{v}$ —Co2—O2 ⁱ	93.91 (11)
O7 ⁱⁱ —Co1—O1	82.59 (10)	$O4^{vi}$ — $Co2$ — $O2^{i}$	94.79 (11)
O7 ⁱⁱⁱ —Co1—O1	89.58 (10)	$O5$ — $Co2$ — $O2^i$	167.36 (10)
O7 ⁱⁱ —Co1—O1 ^{iv}	89.58 (10)	$O5^{i}$ — $Co2$ — $O2^{i}$	95.05 (9)
$O7^{iii}$ —Co1—O1 ^{iv}	82.59 (10)	O3 ^v —Co2—O2	93.91 (11)
O1—Co1—O1 ^{iv}	166.54 (15)	O4 ^{vi} —Co2—O2	94.79 (11)
O7 ⁱⁱ —Co1—O2	168.43 (10)	O5—Co2—O2	95.05 (9)
O7 ⁱⁱⁱ —Co1—O2	82.19 (10)	O5 ⁱ —Co2—O2	167.36 (10)
O1—Co1—O2	101.27 (9)	O2 ⁱ —Co2—O2	72.44 (13)

Symmetry codes: (i) x, -y+1, z; (ii) x+1/2, -y+1/2, z; (iii) -x+1/2, -y+1/2, -z+1; (iv) -x+1, y, -z+1; (v) -x+1, -y+1, -z+1; (vi) -x+1, -y+1, -z+2; (vii) -x+1/2, -y+1/2, -z; (viii) -x, y, -z; (ix) x-1/2, -y+1/2, z-1; (x) x-1/2, y-1/2, z-1; (xi) x, y, z+1; (xii) -x, -y+1, -z+1; (xiii) -x, y, -z+1; (xiv) x-1, y, z-1.