[Journal logo]

Volume 69 
Part 12 
Pages o1842-o1843  
December 2013  

Received 20 November 2013
Accepted 23 November 2013
Online 30 November 2013

Key indicators
Single-crystal X-ray study
T = 173 K
Mean [sigma](C-C) = 0.003 Å
R = 0.032
wR = 0.085
Data-to-parameter ratio = 14.1
Details
Open access

4-Chloro-3-methyl­phenyl quinoline-2-carboxyl­ate

aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India,bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India,cP.P.S.F.T Department, Central Food Technology Research institute, Mysore 570 005, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
Correspondence e-mail: jjasinski@keene.edu

In the title compound, C17H12ClNO2, the dihedral angle between the mean planes of the quinoline ring system and the benzene ring is 68.7 (7)°. The mean plane of the carboxyl­ate group is twisted from the latter planes by 14.0 (1) and 80.2 (4)°, respectively. In the crystal, weak C-H...O inter­actions are observed, forming chains along [001]. In addition, [pi]-[pi] stacking inter­actions [centroid-centroid distances = 3.8343 (13) and 3.7372 (13)Å] occur. No classical hydrogen bonds were observed.

Related literature

For heterocycles in natural products, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]). For heterocycles in fragrances and dyes, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For heterocycles in biologically active compounds, see: Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.]). For the use of quinoline alkaloids as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998[Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.]). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011[Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.]). For related structures, see: Fazal et al. (2012[Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231-o3232.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.]); Jing & Qin (2008[Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]).

[Scheme 1]

Experimental

Crystal data
  • C17H12ClNO2

  • Mr = 297.73

  • Orthorhombic, P 21 21 21

  • a = 7.75379 (16) Å

  • b = 11.9658 (3) Å

  • c = 14.9005 (3) Å

  • V = 1382.48 (5) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 2.48 mm-1

  • T = 173 K

  • 0.32 × 0.24 × 0.20 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.530, Tmax = 1.000

  • 8419 measured reflections

  • 2703 independent reflections

  • 2636 reflections with I > 2[sigma](I)

  • Rint = 0.030

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.085

  • S = 1.05

  • 2703 reflections

  • 192 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.20 e Å-3

  • [Delta][rho]min = -0.19 e Å-3

  • Absolute structure: Flack parameter determined using 1081 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: -0.009 (10)

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C8-H8...O1i 0.93 2.57 3.317 (3) 138
Symmetry code: (i) [-x+{\script{1\over 2}}, -y, z-{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT6947 ).


Acknowledgements

EF thanks the CFTRI, Mysore, and Yuvaraja's College, UOM, for providing research facilities. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.  [CSD] [CrossRef] [IUCr Journals]
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031-1035.  [CrossRef] [ChemPort] [PubMed] [Web of Science]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231-o3232.  [CrossRef] [ChemPort] [IUCr Journals]
Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.  [ChemPort]
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.  [CrossRef] [ChemPort] [PubMed] [Web of Science]
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.  [CrossRef] [ChemPort]
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.  [CrossRef]
Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.  [CrossRef] [PubMed] [ChemPort]
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.  [CrossRef] [ChemPort] [IUCr Journals]
Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.  [Web of Science] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.  [Web of Science] [ChemPort] [PubMed]


Acta Cryst (2013). E69, o1842-o1843   [ doi:10.1107/S1600536813032017 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.