supplementary materials


bt6947 scheme

Acta Cryst. (2013). E69, o1842-o1843    [ doi:10.1107/S1600536813032017 ]

4-Chloro-3-methyl­phenyl quinoline-2-carboxyl­ate

E. Fazal, M. Kaur, B. S. Sudha, S. Nagarajan and J. P. Jasinski

Abstract top

In the title compound, C17H12ClNO2, the dihedral angle between the mean planes of the quinoline ring system and the benzene ring is 68.7 (7)°. The mean plane of the carboxyl­ate group is twisted from the latter planes by 14.0 (1) and 80.2 (4)°, respectively. In the crystal, weak C-H...O inter­actions are observed, forming chains along [001]. In addition, [pi]-[pi] stacking inter­actions [centroid-centroid distances = 3.8343 (13) and 3.7372 (13)Å] occur. No classical hydrogen bonds were observed.

Comment top

Quinoline-2 carboxylic acid derivatives are a class of important materials as anti-tuberculosis agents, as fluorescent reagents, hydrophobic field-detection reagents, visualisation reagents, fluorescent labelled peptide probes and as antihyperglycemics. Quinoline derivatives represent a major class of heterocycles and are found in natural products (Morimoto et al., 1991; Michael, 1997), numerous commercial products, including fragrances, dyes (Padwa et al., 1999) and biologically active compounds (Markees et al., 1970; Campbell et al., 1988). Quinoline alkaloids such as quinine, chloroquin, mefloquine and amodiaquine are used as efficient drugs for the treatment of malaria (Robert & Meunier, 1998). Quinoline as a privileged scaffold in cancer drug discovery is published (Solomon & Lee, 2011). The crystal structures of 4-methylphenyl quinoline-2-carboxylate (Fazal et al., 2012), 1-(quinolin-2-yl)ethanone (Butcher et al., 2007) and methyl quinoline-2-carboxylate (Jing & Qin, 2008) and the synthesis, crystal structures and theoretical studies of four Schiff bases derived from 4-hydrazinyl-8-(trifluoromethyl) quinoline (Jasinski et al., 2010) have been reported. In view of the importance of quinolines, this paper reports the crystal structure of the title compound, C17H12ClNO2.

In the title compound, the dihedral angle between the mean planes of the quinoline ring and the phenyl ring is 68.7 (7)° (Fig. 1). The mean plane of the carboxylate group is twisted from the mean planes of the quinoline ring and phenyl ring by 14.0 (1)° and 80.2 (4)°, respectively. In the crystal, weak C8—H8···O1 intermolecular interactions are observed making chains along [0 0 1] (Fig. 2). In addition, ππ stacking interactions further stabilize the crystal packing with centroid-centroid distances of 3.8343 (13)Å (Cg1–Cg3i) and 3.7372 (13)Å (Cg2–Cg3i) (where Cg1 = N1/C2/C3/C4/C5/C10; Cg2 = C5-C10; Cg3 = C11-C16; symmetry operator (i) -0.5+x, 0.5-y, 1-z). No classical hydrogen bonds were observed.

Related literature top

For heterocycles in natural products, see: Morimoto et al. (1991); Michael (1997). For heterocycles in fragrances and dyes, see: Padwa et al. (1999). For heterocycles in biologically active compounds, see: Markees et al. (1970); Campbell et al. (1988). For the use of quinoline alkaloids as efficient drugs for the treatment of malaria, see: Robert & Meunier, (1998). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011). For related structures, see: Fazal et al. (2012); Butcher et al. (2007); Jing & Qin (2008); Jasinski et al. (2010).

Experimental top

The title compound was prepared by the following procedure: To a mixture of 1.73 g (10 mmole) of quinaldic acid and 1.42 g (10 mmole) of 4-chloro-3-methylphenol in a round-bottomed flask fitted with a reflex condenser with a drying tube is added 0.75 g (5 mmole) of phosphorous oxychloride. The mixture is heated with occasional swirling, and temperature is maintained at 353-363 K. At the end of eight hours the reaction mixture is poured in to a solution of 2 g of sodium bicarbonate in 25 mL of water. The precipitated ester is collected on a filter and washed with water. The yield of crude, air dried 4-chloro-3-methyl phenyl quinoline-2-carboxylate is 1.89 to 2.05 g (60-70%). X-ray quality crystal was obtained by recrystallization from absolute ethanol (M.P.: 383-385 K).

Refinement top

All H atoms were visible in a difference map, but placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH) or 0.96Å (CH3). Isotropic displacement parameters for these atoms were set to 1.2 (CH) or 1.5 (CH3) times Ueq of the parent atom. Idealised Me refined as rotating group.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of the title compound showing the labeling scheme with 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing of the title compound viewed along the b axis. Dashed lines indicate weak C8—H8···O1 intermolecular interactions making chains along [0 0 1] and influence the crystal packing. The remaining H atoms have been removed for clarity.
4-Chloro-3-methylphenyl quinoline-2-carboxylate top
Crystal data top
C17H12ClNO2Dx = 1.430 Mg m3
Mr = 297.73Cu Kα radiation, λ = 1.54184 Å
Orthorhombic, P212121Cell parameters from 4795 reflections
a = 7.75379 (16) Åθ = 4.7–72.2°
b = 11.9658 (3) ŵ = 2.48 mm1
c = 14.9005 (3) ÅT = 173 K
V = 1382.48 (5) Å3Irregular, colourless
Z = 40.32 × 0.24 × 0.20 mm
F(000) = 616
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2703 independent reflections
Radiation source: Enhance (Cu) X-ray Source2636 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.030
ω scansθmax = 72.3°, θmin = 4.7°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 94
Tmin = 0.530, Tmax = 1.000k = 1414
8419 measured reflectionsl = 1718
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0574P)2 + 0.1134P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.085Δρmax = 0.20 e Å3
S = 1.05Δρmin = 0.19 e Å3
2703 reflectionsExtinction correction: SHELXL2012 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
192 parametersExtinction coefficient: 0.0036 (6)
0 restraintsAbsolute structure: Flack parameter determined using 1081 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.009 (10)
Hydrogen site location: inferred from neighbouring sites
Crystal data top
C17H12ClNO2V = 1382.48 (5) Å3
Mr = 297.73Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 7.75379 (16) ŵ = 2.48 mm1
b = 11.9658 (3) ÅT = 173 K
c = 14.9005 (3) Å0.32 × 0.24 × 0.20 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
2703 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
2636 reflections with I > 2σ(I)
Tmin = 0.530, Tmax = 1.000Rint = 0.030
8419 measured reflectionsθmax = 72.3°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.085Δρmax = 0.20 e Å3
S = 1.05Δρmin = 0.19 e Å3
2703 reflectionsAbsolute structure: Flack parameter determined using 1081 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
192 parametersAbsolute structure parameter: 0.009 (10)
0 restraints
Special details top

Experimental. 1HNMR(500 MHz,DMSO) δ 8.66 (1H,d, J= 8.51Hz), 8.27(1H,d, J= 8.5Hz),8.24(1H,d, J= 8.43 Hz), 8.15(1H,d, J= 8.2 Hz),7.93(1H,dt, J1= 8.07Hz, J2=6.73, J3=1.06Hz), 7.8(1H,t, J= 7.55Hz), 7.54(1H,d, J= 8.6Hz), 7.41(1H,d, J= 2.4Hz), 7.26(1H,dd, J1= 8.6Hz, J2=2.57 Hz), 3.3-3.4(1H,m),2.38(3H,s).

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.64546 (8)0.08068 (5)0.89548 (4)0.03791 (19)
O10.3575 (3)0.03286 (15)0.50511 (12)0.0448 (5)
O20.5593 (2)0.15377 (14)0.55202 (10)0.0319 (4)
N10.3627 (2)0.13829 (14)0.33957 (12)0.0241 (4)
C10.4441 (3)0.11335 (17)0.49220 (14)0.0262 (5)
C20.4431 (3)0.18389 (18)0.40823 (14)0.0244 (4)
C30.5281 (3)0.28841 (18)0.40610 (15)0.0271 (5)
H30.57870.31790.45750.032*
C40.5337 (3)0.34478 (19)0.32646 (16)0.0284 (5)
H40.58800.41400.32300.034*
C50.4568 (3)0.29779 (17)0.24938 (15)0.0244 (4)
C60.4651 (3)0.34833 (19)0.16312 (16)0.0305 (5)
H60.52190.41620.15570.037*
C70.3899 (3)0.2973 (2)0.09138 (16)0.0343 (5)
H70.39870.32960.03480.041*
C80.2985 (3)0.1955 (2)0.10181 (16)0.0324 (5)
H80.24670.16230.05230.039*
C90.2861 (3)0.14592 (19)0.18406 (15)0.0276 (5)
H90.22330.08020.19050.033*
C100.3685 (3)0.19422 (18)0.25977 (14)0.0231 (4)
C110.5754 (3)0.09412 (19)0.63323 (14)0.0270 (5)
C120.4958 (3)0.13691 (19)0.70842 (15)0.0259 (4)
H120.42950.20140.70390.031*
C130.5141 (3)0.08374 (19)0.79167 (14)0.0255 (4)
C140.6158 (3)0.01188 (18)0.79341 (15)0.0265 (5)
C150.6979 (3)0.05421 (19)0.71832 (16)0.0305 (5)
H150.76610.11790.72260.037*
C160.6771 (3)0.00042 (19)0.63626 (15)0.0305 (5)
H160.73050.02750.58480.037*
C170.4262 (3)0.1281 (2)0.87402 (15)0.0340 (5)
H17A0.36640.19600.85940.051*
H17B0.51070.14300.91960.051*
H17C0.34520.07380.89570.051*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0486 (3)0.0340 (3)0.0312 (3)0.0002 (3)0.0084 (2)0.0109 (2)
O10.0585 (11)0.0405 (10)0.0356 (9)0.0239 (9)0.0172 (9)0.0143 (8)
O20.0431 (9)0.0316 (8)0.0209 (7)0.0097 (7)0.0046 (7)0.0033 (6)
N10.0279 (8)0.0201 (8)0.0241 (8)0.0002 (8)0.0002 (7)0.0010 (7)
C10.0301 (10)0.0250 (11)0.0235 (10)0.0002 (9)0.0018 (9)0.0006 (8)
C20.0267 (10)0.0213 (9)0.0251 (10)0.0028 (8)0.0001 (8)0.0000 (8)
C30.0298 (11)0.0229 (10)0.0285 (11)0.0003 (8)0.0029 (9)0.0029 (9)
C40.0299 (11)0.0193 (10)0.0360 (11)0.0009 (8)0.0009 (9)0.0000 (9)
C50.0256 (10)0.0194 (9)0.0282 (10)0.0040 (8)0.0043 (8)0.0017 (8)
C60.0345 (12)0.0238 (11)0.0331 (11)0.0032 (9)0.0064 (9)0.0064 (9)
C70.0447 (14)0.0325 (12)0.0256 (11)0.0071 (10)0.0060 (10)0.0066 (9)
C80.0407 (12)0.0319 (12)0.0246 (10)0.0060 (9)0.0007 (9)0.0031 (9)
C90.0325 (10)0.0221 (10)0.0282 (11)0.0023 (9)0.0002 (9)0.0011 (9)
C100.0247 (10)0.0196 (9)0.0250 (10)0.0040 (8)0.0019 (8)0.0004 (8)
C110.0320 (10)0.0274 (11)0.0216 (10)0.0082 (9)0.0049 (8)0.0025 (8)
C120.0277 (10)0.0230 (10)0.0269 (10)0.0016 (9)0.0038 (8)0.0000 (9)
C130.0264 (10)0.0254 (10)0.0247 (10)0.0047 (9)0.0021 (8)0.0009 (9)
C140.0310 (11)0.0249 (10)0.0236 (9)0.0045 (9)0.0060 (8)0.0041 (8)
C150.0338 (12)0.0222 (11)0.0354 (12)0.0004 (9)0.0032 (9)0.0025 (9)
C160.0352 (12)0.0299 (11)0.0263 (10)0.0024 (9)0.0007 (9)0.0070 (9)
C170.0378 (12)0.0375 (12)0.0268 (11)0.0003 (10)0.0050 (9)0.0004 (9)
Geometric parameters (Å, º) top
Cl1—C141.745 (2)C8—H80.9300
O1—C11.190 (3)C8—C91.365 (3)
O2—C11.352 (3)C9—H90.9300
O2—C111.410 (2)C9—C101.420 (3)
N1—C21.317 (3)C11—C121.378 (3)
N1—C101.365 (3)C11—C161.380 (3)
C1—C21.509 (3)C12—H120.9300
C2—C31.414 (3)C12—C131.401 (3)
C3—H30.9300C13—C141.390 (3)
C3—C41.366 (3)C13—C171.501 (3)
C4—H40.9300C14—C151.383 (3)
C4—C51.411 (3)C15—H150.9300
C5—C61.422 (3)C15—C161.391 (3)
C5—C101.424 (3)C16—H160.9300
C6—H60.9300C17—H17A0.9600
C6—C71.362 (4)C17—H17B0.9600
C7—H70.9300C17—H17C0.9600
C7—C81.418 (4)
C1—O2—C11116.31 (17)C10—C9—H9119.8
C2—N1—C10117.25 (18)N1—C10—C5122.49 (19)
O1—C1—O2123.8 (2)N1—C10—C9118.53 (19)
O1—C1—C2125.7 (2)C9—C10—C5119.0 (2)
O2—C1—C2110.48 (18)C12—C11—O2118.0 (2)
N1—C2—C1114.51 (18)C12—C11—C16122.3 (2)
N1—C2—C3124.7 (2)C16—C11—O2119.6 (2)
C3—C2—C1120.73 (19)C11—C12—H12119.8
C2—C3—H3120.9C11—C12—C13120.4 (2)
C4—C3—C2118.1 (2)C13—C12—H12119.8
C4—C3—H3120.9C12—C13—C17121.1 (2)
C3—C4—H4120.1C14—C13—C12116.6 (2)
C3—C4—C5119.8 (2)C14—C13—C17122.3 (2)
C5—C4—H4120.1C13—C14—Cl1118.67 (17)
C4—C5—C6123.2 (2)C15—C14—Cl1118.13 (17)
C4—C5—C10117.5 (2)C15—C14—C13123.2 (2)
C6—C5—C10119.4 (2)C14—C15—H15120.4
C5—C6—H6120.0C14—C15—C16119.2 (2)
C7—C6—C5119.9 (2)C16—C15—H15120.4
C7—C6—H6120.0C11—C16—C15118.3 (2)
C6—C7—H7119.6C11—C16—H16120.9
C6—C7—C8120.9 (2)C15—C16—H16120.9
C8—C7—H7119.6C13—C17—H17A109.5
C7—C8—H8119.8C13—C17—H17B109.5
C9—C8—C7120.5 (2)C13—C17—H17C109.5
C9—C8—H8119.8H17A—C17—H17B109.5
C8—C9—H9119.8H17A—C17—H17C109.5
C8—C9—C10120.3 (2)H17B—C17—H17C109.5
Cl1—C14—C15—C16179.57 (17)C6—C5—C10—C92.0 (3)
O1—C1—C2—N113.1 (3)C6—C7—C8—C90.8 (4)
O1—C1—C2—C3168.7 (2)C7—C8—C9—C101.7 (4)
O2—C1—C2—N1166.49 (19)C8—C9—C10—N1175.7 (2)
O2—C1—C2—C311.7 (3)C8—C9—C10—C53.1 (3)
O2—C11—C12—C13177.10 (18)C10—N1—C2—C1175.21 (17)
O2—C11—C16—C15176.69 (19)C10—N1—C2—C32.9 (3)
N1—C2—C3—C42.7 (3)C10—C5—C6—C70.4 (3)
C1—O2—C11—C12102.0 (2)C11—O2—C1—O10.7 (3)
C1—O2—C11—C1681.7 (3)C11—O2—C1—C2178.92 (17)
C1—C2—C3—C4175.29 (19)C11—C12—C13—C140.3 (3)
C2—N1—C10—C50.1 (3)C11—C12—C13—C17179.1 (2)
C2—N1—C10—C9178.66 (19)C12—C11—C16—C150.6 (3)
C2—C3—C4—C50.4 (3)C12—C13—C14—Cl1179.22 (16)
C3—C4—C5—C6176.53 (19)C12—C13—C14—C150.6 (3)
C3—C4—C5—C102.9 (3)C13—C14—C15—C160.9 (3)
C4—C5—C6—C7179.0 (2)C14—C15—C16—C110.3 (3)
C4—C5—C10—N12.8 (3)C16—C11—C12—C130.9 (3)
C4—C5—C10—C9178.5 (2)C17—C13—C14—Cl11.4 (3)
C5—C6—C7—C81.9 (4)C17—C13—C14—C15180.0 (2)
C6—C5—C10—N1176.7 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.573.317 (3)138
Symmetry code: (i) x+1/2, y, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.573.317 (3)137.9
Symmetry code: (i) x+1/2, y, z1/2.
Acknowledgements top

EF thanks the CFTRI, Mysore, and Yuvaraja's college, UOM, for providing research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.

Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31, 1031–1035.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231–o3232.

Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172–181.

Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35–36.

Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324–326.

Michael, J. P. (1997). Nat. Prod. Rep. 14, 605–608.

Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202–203.

Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595–3607.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.

Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273–279.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488–1508.