organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

4-(3-Fluoro-4-methyl­anilino)-2-methyl­­idene-4-oxo­butanoic acid

aDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri 574 199, India, bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, and cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
*Correspondence e-mail: jjasinski@keene.edu

(Received 5 October 2013; accepted 1 November 2013; online 9 November 2013)

The title compound, C12H12FNO3, crystallizes with two independent mol­ecules (A and B) in the asymmetric unit. The dihedral angle between the mean planes of the 3-fluoro-4-methyl­phenyl ring and the oxo­amine group is 25.7 (7)° in mol­ecule A and 71.3 (7)° in mol­ecule B, while the mean plane of the 2-methyl­idene-4-oxo­butanoic acid group is twisted by 76.2 (1)° from that of the oxo­amine group in mol­ecule A and by 76.2 (4)° in mol­ecule B. In the crystal, N—H⋯O and O—H⋯O hydrogen bonds [the latter forming an R22(8) graph-set motif] link the mol­ecules into a two-dimensional network parallel to the ac plane.

Related literature

For properties of itaconic anhydride polymers, see: Oishi (1980[Oishi, T. (1980). Polym. J. 12, 719-727.]); Urzua et al. (1998[Urzua, M., Opazo, A., Gargallo, L. & Radic, D. (1998). Polym. Bull. 40, 63-67.]). For derivatives of itaconic anhydride, see: Katla et al. (2011[Katla, S., Pothana, P., Gubba, B. & Manda, S. (2011). Chem. Sin. 2, 47-53.]); Shetgiri & Nayak (2005[Shetgiri, N. P. & Nayak, B. K. (2005). Indian J. Chem. Sect. B, 44, 1933-1936.]); Hanoon (2011[Hanoon, H. D. (2011). Nat. J. Chem. 41, 77-89.]); Nayak et al. (2013[Nayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013). Acta Cryst. E69, o83.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C12H12FNO3

  • Mr = 237.23

  • Triclinic, [P \overline 1]

  • a = 6.3368 (3) Å

  • b = 8.2642 (4) Å

  • c = 21.0277 (11) Å

  • α = 84.057 (4)°

  • β = 89.798 (4)°

  • γ = 86.062 (4)°

  • V = 1092.69 (9) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.12 mm−1

  • T = 173 K

  • 0.38 × 0.32 × 0.16 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.673, Tmax = 1.000

  • 13094 measured reflections

  • 7221 independent reflections

  • 4872 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.081

  • wR(F2) = 0.221

  • S = 1.06

  • 7221 reflections

  • 327 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.68 e Å−3

  • Δρmin = −0.28 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O2A—H2A⋯O3Ai 0.82 1.84 2.658 (2) 174
O2B—H2B⋯O3Bii 0.82 1.85 2.667 (2) 176
N1A—H1A⋯O1Biii 0.86 2.10 2.948 (2) 168
N1B—H1B⋯O1Aiv 0.86 2.10 2.884 (2) 151
Symmetry codes: (i) -x, -y+1, -z+1; (ii) -x+1, -y+2, -z+1; (iii) x, y-1, z; (iv) x+1, y, z.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.

Supporting information


Comment top

Itaconic anhydride (ITA) is a monomer obtained from renewable resources. Copolymers containing both hydrophilic and hydrophobic segments are drawing considerable attention because of their possible use in biological systems. N-Substituted itaconamic acids are strongly amphiphilic molecules. Itaconic anhydride is more reactive than maleic anhydride and is an alternative monomer for introducing polar functionality into polymers (Oishi, 1980; Urzua et al., 1998). The basic skeleton of itaconic anhydride is useful for the synthesis of various biodynamic cyclic derivatives such as imides (Shetgiri & Nayak, 2005), pyridazine (Katla et al., 2011), oxazepine (Hanoon, 2011) and oxobutanoic acid (Nayak et al., 2013) derivatives. Hence in view of the importance of anhydride derivatives, the crystal structure of the title compound, C12H12NO3F, (I), is reported here.

The title compound, (I), crystallizes with two independent molecules (A & B) in the asymmetric unit (Fig. 1). The dihedral angle between the mean planes of the 3-fluoro-4-methylphenyl ring and the oxo-amine group is 25.7 (7)° (A) and 71.3 (7)Å (B), while the mean plane of the 2-methylidene-4-oxobutanoic acid group is twisted by 76.2 (1)Å (A) and 76.2 (4)Å (B) from that of the oxo-amine group. In the crystal, N—H···O hydrogen bonds and O—H···O R22(8) graph set motif hydrogen bonds link the molecules into a 2-D network along the ac plane (Fig. 2) and influence crystal packing.

Related literature top

For properties of itaconic anhydride polymers, see: Oishi (1980); Urzua et al. (1998). For derivatives of itaconic anhydride, see: Katla et al. (2011); Shetgiri & Nayak (2005); Hanoon (2011); Nayak et al. (2013). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Itaconic anhydride (0.112 g, 1 mmol) dissolved in a 30 ml acetone and it was stirred at ambient temperature and 3-fluoro-4-methyl aniline (0.125 g, 1 mmol) was added portion wise over 30 mins (Fig. 3) The mixture turned into yellow slurry. After stirring 1.5hrs, the slurry was filtered. The solid was washed with acetone and dried to give title compound (I). Single crystals were grown from methanol by the slow evaporation method and used as such for x-ray studies.(M.P.: 414-416 K).

Refinement top

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 0.93Å (CH), 0.97Å (CH2), 0.96Å (CH3), 0.82Å (OH) or 0.86Å (NH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH) times Ueq of the parent atom. Idealised Me and tetrahedral OH refined as rotating groups.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I), C12H12FNO3, showing the labeling scheme with two molecules (A & B) in the asymmetric unit and 30% probability displacement ellipsoids.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the b axis. Dashed lines indicate N—H···O hydrogen bonds and O—H···O R22(8) graph set motif hydrogen bonds which link the molecules into a 2-D network along the ac plane. H atoms not involved in hydrogen bonding have been removed for clarity.
[Figure 3] Fig. 3. Synthesis scheme of (I).
4-(3-Fluoro-4-methylanilino)-2-methylidene-4-oxobutanoic acid top
Crystal data top
C12H12FNO3Z = 4
Mr = 237.23F(000) = 496
Triclinic, P1Dx = 1.442 Mg m3
a = 6.3368 (3) ÅMo Kα radiation, λ = 0.7107 Å
b = 8.2642 (4) ÅCell parameters from 3167 reflections
c = 21.0277 (11) Åθ = 3.3–32.7°
α = 84.057 (4)°µ = 0.12 mm1
β = 89.798 (4)°T = 173 K
γ = 86.062 (4)°Irregular, colourless
V = 1092.69 (9) Å30.38 × 0.32 × 0.16 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7221 independent reflections
Radiation source: Enhance (Mo) X-ray Source4872 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
Detector resolution: 16.0416 pixels mm-1θmax = 32.8°, θmin = 3.3°
ω scansh = 99
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
k = 1112
Tmin = 0.673, Tmax = 1.000l = 3031
13094 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.081H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.221 w = 1/[σ2(Fo2) + (0.0895P)2 + 0.6971P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
7221 reflectionsΔρmax = 0.68 e Å3
327 parametersΔρmin = 0.28 e Å3
0 restraints
Crystal data top
C12H12FNO3γ = 86.062 (4)°
Mr = 237.23V = 1092.69 (9) Å3
Triclinic, P1Z = 4
a = 6.3368 (3) ÅMo Kα radiation
b = 8.2642 (4) ŵ = 0.12 mm1
c = 21.0277 (11) ÅT = 173 K
α = 84.057 (4)°0.38 × 0.32 × 0.16 mm
β = 89.798 (4)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7221 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
4872 reflections with I > 2σ(I)
Tmin = 0.673, Tmax = 1.000Rint = 0.032
13094 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0810 restraints
wR(F2) = 0.221H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.68 e Å3
7221 reflectionsΔρmin = 0.28 e Å3
327 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F1A0.2264 (3)0.7138 (2)0.08603 (8)0.0598 (5)
O1A0.0578 (3)0.49102 (19)0.28774 (8)0.0317 (4)
O2A0.2598 (3)0.4663 (2)0.46934 (8)0.0326 (4)
H2A0.19780.50690.49730.049*
O3A0.0704 (2)0.3813 (2)0.44375 (8)0.0301 (3)
N1A0.1954 (3)0.3003 (2)0.26309 (9)0.0267 (4)
H1A0.24660.20260.27450.032*
C1A0.0240 (3)0.3514 (2)0.29537 (9)0.0223 (4)
C2A0.0635 (3)0.2194 (2)0.34215 (10)0.0253 (4)
H2AA0.13450.14430.31840.030*
H2AB0.05280.15840.36560.030*
C3A0.2160 (3)0.2886 (2)0.38861 (10)0.0239 (4)
C4A0.1221 (3)0.3827 (2)0.43641 (10)0.0236 (4)
C5A0.4195 (4)0.2636 (3)0.38952 (12)0.0324 (5)
H5AA0.518 (5)0.312 (4)0.4188 (14)0.038 (8)*
H5AB0.483 (5)0.204 (4)0.3585 (15)0.049 (9)*
C6A0.3022 (4)0.3877 (3)0.21259 (10)0.0266 (4)
C7A0.2073 (4)0.5190 (3)0.17415 (11)0.0310 (5)
H7A0.07010.55930.18200.037*
C8A0.3231 (4)0.5879 (3)0.12384 (11)0.0349 (5)
C9A0.5269 (4)0.5377 (3)0.10906 (12)0.0351 (5)
C10A0.6179 (4)0.4087 (3)0.14927 (13)0.0388 (6)
H10A0.75700.37160.14210.047*
C11A0.5091 (4)0.3328 (3)0.19983 (12)0.0337 (5)
H11A0.57430.24500.22530.040*
C12A0.6457 (5)0.6181 (4)0.05352 (13)0.0477 (7)
H12D0.55740.70580.03200.072*
H12E0.68430.53940.02420.072*
H12F0.77120.66020.06890.072*
F1B0.6414 (3)1.0662 (3)0.05324 (7)0.0555 (5)
O1B0.4220 (3)0.97672 (18)0.28923 (8)0.0288 (3)
O2B0.2374 (3)0.9727 (2)0.47086 (8)0.0350 (4)
H2B0.30501.01690.49650.053*
O3B0.5598 (2)0.8739 (2)0.44475 (8)0.0318 (4)
N1B0.6529 (3)0.7751 (2)0.26178 (9)0.0278 (4)
H1B0.69690.67430.26960.033*
C1B0.4934 (3)0.8347 (2)0.29677 (9)0.0214 (4)
C2B0.4038 (3)0.7091 (2)0.34588 (10)0.0248 (4)
H2BA0.32500.63480.32400.030*
H2BB0.51940.64600.36890.030*
C3B0.2614 (3)0.7880 (2)0.39254 (9)0.0234 (4)
C4B0.3671 (3)0.8823 (2)0.43834 (9)0.0233 (4)
C5B0.0546 (4)0.7733 (3)0.39513 (12)0.0321 (5)
H5BA0.030 (4)0.831 (3)0.4239 (12)0.029 (7)*
H5BB0.013 (5)0.715 (4)0.3643 (14)0.040 (8)*
C6B0.7520 (3)0.8736 (3)0.21197 (10)0.0260 (4)
C7B0.6465 (4)0.9236 (3)0.15526 (11)0.0304 (5)
H7B0.50930.89500.14890.036*
C8B0.7488 (4)1.0169 (3)0.10828 (11)0.0334 (5)
C9B0.9529 (4)1.0626 (3)0.11392 (11)0.0324 (5)
C10B1.0547 (4)1.0105 (3)0.17149 (11)0.0340 (5)
H10B1.19191.03940.17760.041*
C11B0.9578 (4)0.9164 (3)0.22030 (11)0.0308 (5)
H11B1.03010.88230.25830.037*
C12B1.0594 (5)1.1636 (4)0.06094 (13)0.0466 (7)
H12A1.17391.21560.07830.070*
H12B0.95881.24520.04100.070*
H12C1.11341.09450.02980.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F1A0.0641 (12)0.0530 (11)0.0554 (10)0.0053 (9)0.0081 (9)0.0204 (8)
O1A0.0349 (9)0.0197 (7)0.0393 (9)0.0029 (6)0.0068 (7)0.0007 (6)
O2A0.0261 (8)0.0356 (9)0.0384 (9)0.0011 (7)0.0009 (6)0.0149 (7)
O3A0.0242 (7)0.0300 (8)0.0383 (8)0.0041 (6)0.0013 (6)0.0117 (6)
N1A0.0288 (9)0.0183 (8)0.0324 (9)0.0005 (7)0.0039 (7)0.0003 (6)
C1A0.0234 (9)0.0184 (8)0.0256 (9)0.0015 (7)0.0016 (7)0.0034 (7)
C2A0.0303 (10)0.0161 (8)0.0302 (10)0.0043 (8)0.0005 (8)0.0038 (7)
C3A0.0266 (10)0.0186 (9)0.0265 (9)0.0041 (8)0.0001 (7)0.0007 (7)
C4A0.0237 (9)0.0189 (9)0.0283 (9)0.0047 (7)0.0022 (7)0.0013 (7)
C5A0.0280 (11)0.0319 (12)0.0382 (12)0.0088 (9)0.0004 (9)0.0038 (9)
C6A0.0293 (10)0.0216 (9)0.0297 (10)0.0051 (8)0.0033 (8)0.0043 (7)
C7A0.0321 (11)0.0267 (10)0.0339 (11)0.0020 (9)0.0025 (9)0.0014 (8)
C8A0.0440 (13)0.0257 (11)0.0343 (11)0.0052 (10)0.0028 (10)0.0013 (8)
C9A0.0435 (13)0.0271 (11)0.0371 (12)0.0141 (10)0.0096 (10)0.0065 (9)
C10A0.0326 (12)0.0346 (13)0.0500 (14)0.0060 (10)0.0117 (10)0.0057 (10)
C11A0.0297 (11)0.0284 (11)0.0419 (12)0.0001 (9)0.0045 (9)0.0008 (9)
C12A0.0585 (18)0.0435 (15)0.0430 (14)0.0181 (14)0.0184 (12)0.0042 (11)
F1B0.0517 (10)0.0758 (13)0.0364 (8)0.0110 (9)0.0070 (7)0.0112 (8)
O1B0.0296 (8)0.0180 (7)0.0375 (8)0.0016 (6)0.0067 (6)0.0003 (6)
O2B0.0248 (8)0.0406 (10)0.0422 (9)0.0002 (7)0.0010 (6)0.0179 (7)
O3B0.0226 (7)0.0340 (9)0.0409 (9)0.0035 (7)0.0012 (6)0.0128 (7)
N1B0.0279 (9)0.0180 (8)0.0365 (9)0.0020 (7)0.0068 (7)0.0007 (7)
C1B0.0204 (9)0.0186 (8)0.0257 (9)0.0022 (7)0.0005 (7)0.0030 (7)
C2B0.0285 (10)0.0147 (8)0.0315 (10)0.0045 (7)0.0014 (8)0.0022 (7)
C3B0.0253 (9)0.0186 (9)0.0261 (9)0.0044 (7)0.0011 (7)0.0009 (7)
C4B0.0225 (9)0.0205 (9)0.0266 (9)0.0030 (7)0.0024 (7)0.0009 (7)
C5B0.0267 (11)0.0346 (12)0.0347 (11)0.0075 (9)0.0008 (9)0.0011 (9)
C6B0.0254 (10)0.0198 (9)0.0330 (10)0.0007 (8)0.0066 (8)0.0039 (7)
C7B0.0242 (10)0.0325 (11)0.0355 (11)0.0059 (9)0.0028 (8)0.0062 (9)
C8B0.0347 (12)0.0347 (12)0.0304 (11)0.0019 (10)0.0005 (9)0.0022 (9)
C9B0.0342 (12)0.0278 (11)0.0362 (11)0.0049 (9)0.0100 (9)0.0066 (9)
C10B0.0282 (11)0.0374 (13)0.0384 (12)0.0102 (10)0.0048 (9)0.0085 (9)
C11B0.0263 (10)0.0321 (11)0.0345 (11)0.0037 (9)0.0001 (8)0.0041 (9)
C12B0.0529 (16)0.0426 (15)0.0451 (14)0.0156 (13)0.0182 (12)0.0012 (11)
Geometric parameters (Å, º) top
F1A—C8A1.355 (3)F1B—C8B1.356 (3)
O1A—C1A1.228 (2)O1B—C1B1.223 (2)
O2A—H2A0.8200O2B—H2B0.8200
O2A—C4A1.315 (2)O2B—C4B1.311 (2)
O3A—C4A1.229 (3)O3B—C4B1.225 (2)
N1A—H1A0.8600N1B—H1B0.8600
N1A—C1A1.345 (3)N1B—C1B1.344 (2)
N1A—C6A1.418 (3)N1B—C6B1.429 (3)
C1A—C2A1.524 (3)C1B—C2B1.523 (3)
C2A—H2AA0.9700C2B—H2BA0.9700
C2A—H2AB0.9700C2B—H2BB0.9700
C2A—C3A1.500 (3)C2B—C3B1.499 (3)
C3A—C4A1.483 (3)C3B—C4B1.488 (3)
C3A—C5A1.320 (3)C3B—C5B1.325 (3)
C5A—H5AA0.97 (3)C5B—H5BA0.95 (3)
C5A—H5AB0.97 (3)C5B—H5BB0.96 (3)
C6A—C7A1.387 (3)C6B—C7B1.380 (3)
C6A—C11A1.392 (3)C6B—C11B1.391 (3)
C7A—H7A0.9300C7B—H7B0.9300
C7A—C8A1.382 (3)C7B—C8B1.377 (3)
C8A—C9A1.373 (4)C8B—C9B1.381 (3)
C9A—C10A1.385 (4)C9B—C10B1.388 (3)
C9A—C12A1.508 (3)C9B—C12B1.508 (3)
C10A—H10A0.9300C10B—H10B0.9300
C10A—C11A1.384 (3)C10B—C11B1.389 (3)
C11A—H11A0.9300C11B—H11B0.9300
C12A—H12D0.9600C12B—H12A0.9600
C12A—H12E0.9600C12B—H12B0.9600
C12A—H12F0.9600C12B—H12C0.9600
C4A—O2A—H2A109.5C4B—O2B—H2B109.5
C1A—N1A—H1A116.0C1B—N1B—H1B118.9
C1A—N1A—C6A128.04 (17)C1B—N1B—C6B122.27 (17)
C6A—N1A—H1A116.0C6B—N1B—H1B118.9
O1A—C1A—N1A123.59 (19)O1B—C1B—N1B123.28 (18)
O1A—C1A—C2A122.32 (18)O1B—C1B—C2B122.36 (17)
N1A—C1A—C2A114.09 (17)N1B—C1B—C2B114.34 (17)
C1A—C2A—H2AA109.1C1B—C2B—H2BA109.3
C1A—C2A—H2AB109.1C1B—C2B—H2BB109.3
H2AA—C2A—H2AB107.9H2BA—C2B—H2BB107.9
C3A—C2A—C1A112.28 (16)C3B—C2B—C1B111.76 (16)
C3A—C2A—H2AA109.1C3B—C2B—H2BA109.3
C3A—C2A—H2AB109.1C3B—C2B—H2BB109.3
C4A—C3A—C2A115.60 (18)C4B—C3B—C2B115.88 (18)
C5A—C3A—C2A123.3 (2)C5B—C3B—C2B123.4 (2)
C5A—C3A—C4A121.1 (2)C5B—C3B—C4B120.7 (2)
O2A—C4A—C3A114.93 (18)O2B—C4B—C3B114.48 (18)
O3A—C4A—O2A123.6 (2)O3B—C4B—O2B123.6 (2)
O3A—C4A—C3A121.48 (19)O3B—C4B—C3B121.93 (18)
C3A—C5A—H5AA122.7 (18)C3B—C5B—H5BA119.9 (17)
C3A—C5A—H5AB122.1 (19)C3B—C5B—H5BB120.1 (18)
H5AA—C5A—H5AB115 (3)H5BA—C5B—H5BB120 (2)
C7A—C6A—N1A123.2 (2)C7B—C6B—N1B120.5 (2)
C7A—C6A—C11A119.2 (2)C7B—C6B—C11B119.9 (2)
C11A—C6A—N1A117.53 (19)C11B—C6B—N1B119.6 (2)
C6A—C7A—H7A121.1C6B—C7B—H7B120.7
C8A—C7A—C6A117.9 (2)C8B—C7B—C6B118.5 (2)
C8A—C7A—H7A121.1C8B—C7B—H7B120.7
F1A—C8A—C7A117.0 (2)F1B—C8B—C7B117.6 (2)
F1A—C8A—C9A117.8 (2)F1B—C8B—C9B118.4 (2)
C9A—C8A—C7A125.1 (2)C7B—C8B—C9B124.0 (2)
C8A—C9A—C10A115.3 (2)C8B—C9B—C10B116.0 (2)
C8A—C9A—C12A122.7 (2)C8B—C9B—C12B122.2 (2)
C10A—C9A—C12A121.9 (2)C10B—C9B—C12B121.8 (2)
C9A—C10A—H10A118.9C9B—C10B—H10B119.0
C11A—C10A—C9A122.3 (2)C9B—C10B—C11B122.0 (2)
C11A—C10A—H10A118.9C11B—C10B—H10B119.0
C6A—C11A—H11A119.9C6B—C11B—H11B120.2
C10A—C11A—C6A120.1 (2)C10B—C11B—C6B119.5 (2)
C10A—C11A—H11A119.9C10B—C11B—H11B120.2
C9A—C12A—H12D109.5C9B—C12B—H12A109.5
C9A—C12A—H12E109.5C9B—C12B—H12B109.5
C9A—C12A—H12F109.5C9B—C12B—H12C109.5
H12D—C12A—H12E109.5H12A—C12B—H12B109.5
H12D—C12A—H12F109.5H12A—C12B—H12C109.5
H12E—C12A—H12F109.5H12B—C12B—H12C109.5
F1A—C8A—C9A—C10A180.0 (2)F1B—C8B—C9B—C10B179.3 (2)
F1A—C8A—C9A—C12A0.7 (4)F1B—C8B—C9B—C12B0.5 (4)
O1A—C1A—C2A—C3A15.6 (3)O1B—C1B—C2B—C3B13.9 (3)
N1A—C1A—C2A—C3A165.26 (18)N1B—C1B—C2B—C3B167.55 (19)
N1A—C6A—C7A—C8A175.9 (2)N1B—C6B—C7B—C8B179.3 (2)
N1A—C6A—C11A—C10A177.1 (2)N1B—C6B—C11B—C10B179.2 (2)
C1A—N1A—C6A—C7A22.6 (4)C1B—N1B—C6B—C7B71.6 (3)
C1A—N1A—C6A—C11A160.4 (2)C1B—N1B—C6B—C11B109.7 (2)
C1A—C2A—C3A—C4A69.2 (2)C1B—C2B—C3B—C4B69.6 (2)
C1A—C2A—C3A—C5A113.4 (2)C1B—C2B—C3B—C5B112.1 (2)
C2A—C3A—C4A—O2A168.57 (17)C2B—C3B—C4B—O2B168.70 (17)
C2A—C3A—C4A—O3A11.3 (3)C2B—C3B—C4B—O3B11.7 (3)
C5A—C3A—C4A—O2A14.0 (3)C5B—C3B—C4B—O2B13.0 (3)
C5A—C3A—C4A—O3A166.2 (2)C5B—C3B—C4B—O3B166.6 (2)
C6A—N1A—C1A—O1A5.3 (4)C6B—N1B—C1B—O1B0.6 (3)
C6A—N1A—C1A—C2A173.9 (2)C6B—N1B—C1B—C2B177.90 (19)
C6A—C7A—C8A—F1A178.7 (2)C6B—C7B—C8B—F1B179.3 (2)
C6A—C7A—C8A—C9A0.7 (4)C6B—C7B—C8B—C9B0.8 (4)
C7A—C6A—C11A—C10A0.1 (4)C7B—C6B—C11B—C10B0.5 (3)
C7A—C8A—C9A—C10A0.6 (4)C7B—C8B—C9B—C10B0.7 (4)
C7A—C8A—C9A—C12A179.9 (3)C7B—C8B—C9B—C12B179.4 (2)
C8A—C9A—C10A—C11A1.6 (4)C8B—C9B—C10B—C11B0.6 (4)
C9A—C10A—C11A—C6A1.3 (4)C9B—C10B—C11B—C6B0.6 (4)
C11A—C6A—C7A—C8A1.0 (4)C11B—C6B—C7B—C8B0.6 (3)
C12A—C9A—C10A—C11A179.1 (3)C12B—C9B—C10B—C11B179.5 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O3Ai0.821.842.658 (2)174
O2B—H2B···O3Bii0.821.852.667 (2)176
N1A—H1A···O1Biii0.862.102.948 (2)168
N1B—H1B···O1Aiv0.862.102.884 (2)151
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2A—H2A···O3Ai0.821.842.658 (2)174.0
O2B—H2B···O3Bii0.821.852.667 (2)175.9
N1A—H1A···O1Biii0.862.102.948 (2)168.2
N1B—H1B···O1Aiv0.862.102.884 (2)151.2
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y+2, z+1; (iii) x, y1, z; (iv) x+1, y, z.
 

Acknowledgements

BN thanks the UGC for a BSR one-time grant for the purchase of chemicals and the DST–PURSE for financial assistance. HSY thanks the University of Mysore for research facilities. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

First citationAgilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.  Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationDolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHanoon, H. D. (2011). Nat. J. Chem. 41, 77–89.  Google Scholar
First citationKatla, S., Pothana, P., Gubba, B. & Manda, S. (2011). Chem. Sin. 2, 47–53.  CAS Google Scholar
First citationNayak, P. S., Narayana, B., Yathirajan, H. S., Gerber, T., Brecht, B. van & Betz, R. (2013). Acta Cryst. E69, o83.  CSD CrossRef IUCr Journals Google Scholar
First citationOishi, T. (1980). Polym. J. 12, 719–727.  CrossRef CAS Web of Science Google Scholar
First citationPalatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationShetgiri, N. P. & Nayak, B. K. (2005). Indian J. Chem. Sect. B, 44, 1933–1936.  Google Scholar
First citationUrzua, M., Opazo, A., Gargallo, L. & Radic, D. (1998). Polym. Bull. 40, 63–67.  CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds