supplementary materials


cq2008 scheme

Acta Cryst. (2013). E69, m629-m630    [ doi:10.1107/S1600536813029413 ]

Di-[mu]2-acetato-1:2[kappa]2O:O';2:3[kappa]2O:O'-bis­{[mu]2-4,4'-di­chloro-2,2'-[2,2-di­methyl­propane-1,3-diylbis(nitrilo­methanylyl­idene)]diphenolato}-1:2[kappa]6O,N,N',O':O,O';2:3[kappa]6O,O':O,N,N',O'-tri­cadmium

K. Kubono, K. Tani, K. Yokoi, T. Shinmyozu and K. Goto

Abstract top

In the title linear homo-trinuclear complex, [Cd3(C19H18Cl2N2O2)2(C2H3O2)2], the central CdII atom is located on a centre of inversion and has a distorted octa­hedral coordination geometry formed by four O atoms from two bidentate/tetra­dentate Schiff base ligands and two O atoms from two bridging acetate ligands. The coordination geometry of the terminal CdII atom is square-pyramidal with the tetra­dentate part of the ligand in the basal plane and one O atom from an acetate ligand occupying the apical site. The six-membered CdN2C3 ring adopts a chair conformation. The acetate-bridged Cd...Cd distance is 3.3071 (2) Å. The crystal structure is stabilized by C-H...O hydrogen bonds, which form C(7) chain motifs and give rise to a two-dimensional supra­molecular network structure lying parallel to the ab plane.

Comment top

Metalloligands are metal-complex molecules which can act as ligands by reacting with other metal ions to form, for example, polynuclear complexes, coordination polymers and metal-organic frameworks. Recently metalloligands have received much attention, because of their functional properties and many potential applications, such as luminescence, catalysis, magnetism, gas storage, ion recognition, see: Du et al. (2012), Carlucci et al. (2011) and Das et al. (2011). The metal complexes with Schiff base ligand, bis(salicylidene)propane-1,3-diamine can be metalloligands, forming linear homo- or hetero-triuclear complexes with divalent metal salts, see: Atakol, Arıcı et al. (1999), Das et al. (2013) and Fukuhara et al. (1990). We have recently studied the structure of a homo-trinuclear CuII complex with tetradentate bis-chlorosalicylidene, 4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenol and copper acetate units as the building blocks. (Kubono et al., 2012). It can be considered that the compound is a 1:2 metal-complex between a copper(II) ion and a CuII mononuclear complex, which acts as a metalloligand. Subsequently, we have tried to synthesize further trinuclear complexes with the same ligand and other metal ions. Herein, the structure of the title cadmium-based trinuclear complex, containing the tetradentate Schiff base ligand and cadmium acetate units, is reported.

The central CdII atom, Cd2, is located on a centre of inversion and has a distorted octahedral coordination enviroment, formed by four oxygen atoms from two tetradentate Schiff base ligands in the equatorial plane and an oxygen atom from each of the two bridging acetate ligands in the axial positions. The terminal CdII atom, Cd1, has a distorted square-pyramidal configuration with atoms in the basal plane comprising two phenolate O and two imine N atoms from the tetradentate ligand. The apical site is occupied by one O atom from an acetate bridging ligand. Cd1 is located at 0.77466 (10) Å above the mean basal plane (N1/N2/O1/O2) of the square-based pyramid. The six-membered Cd1/N1/C8/C9/C10/N2 ring adopts a chair conformation with puckering parameters (Cremer & Pople, 1975): Q = 0.6280 (15) Å, θ = 3.29 (14)° and φ = 251 (2)°. The bond lengths and angles involving CdII atoms are comparable to those observed in related linear homo-trinuclear CdII complexes (Atakol, Aksu et al., 1999; Xue et al., 2012). The dihedral angle between the benzene rings (C1–C6 and C14–C19) is 71.88 (7)°, a value comparable with that found in the related trinuclear CuII complex (Kubono et al., 2012). The Cd1···Cd2 distance is 3.3071 (2) Å, similar to that found in related structures (Atakol, Aksu et al., 1999; Xue et al., 2012). In the crystal structure of the title complex, there is an intermolecular C15—H15···O3i hydrogen bond [symmetry code: (i) -x + 1/2, y + 1/2, z; Table 1], forming a C(7) chain motif (Bernstein et al., 1995). C15—H in the benzene ring at (x, y, z) acts as hydrogen bond donor to atom O3 from an acetate at (-x + 1/2, y + 1/2, z), so forming a C(7) chain running parallel to the b-axis and generated by the b-glide plane at x = 1/4. The crystal structure is stabilised by intermolecular C—H···O hydrogen bonds, which form a two-dimensional supramolecular network structure parallel to the ab plane with an R44(34) graph-set ring motif (Fig. 2).

Related literature top

For metalloligands, see: Du et al. (2012); Carlucci et al. (2011); Das et al. (2011). Metal complexes with the Schiff base ligand, bis(salicylidene)propane-1,3-diamine can be metalloligands, forming linear homo- or hetero-triuclear complexes with divalent metal salts, see: Atakol, Arıcı et al. (1999), Das et al. (2013) and Fukuhara et al. (1990). For related structures, see: Atakol, Aksu et al. (1999); Kubono et al. (2012); Xue et al. (2012). For analysis of ring conformations, see: Cremer & Pople (1975). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental top

The Schiff base ligand, 4'-dichloro-2,2'-[2,2-dimethylpropane-1,3- diylbis(nitrilomethanylylidene)]diphenol, (0.40 mmol) was dissolved in 20 ml hot methanol. A solution of cadmium acetate dihydrate (0.60 mmol) in 20 ml hot methanol was then added to the ligand solution. The mixture was stirred for 20 min at 340 K. After a few weeks at room temperature, colorless crystals of the title complex were obtained. Yield 48%. Analysis calculated for C42H42Cd3Cl4N4O8: C 41.70, H 3.50, N 4.63%; found: C 41.50, H 3.44, N 4.33%.

Refinement top

All H atoms bound to carbon were placed at idealized positions and refined using a riding model, with C—H = 0.95–0.99 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement: RAPID-AUTO (Rigaku, 2006); data reduction: RAPID-AUTO (Rigaku, 2006); program(s) used to solve structure: SIR92 (Altomare, et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: CrystalStructure (Rigaku, 2010).

Figures top
[Figure 1] Fig. 1. The title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by spheres of arbitrary radius. [symmetry code: (i) -x + 1, -y, -z + 1.]
[Figure 2] Fig. 2. Two-dimensional supramolecular network structure of the title compound. The intermolecular C—H···O hydrogen bonds are shown as dashed lines.
Di-µ2-acetato-1:2κ2O:O';2:3κ2O:O'-bis{µ2-4,4'-dichloro-2,2'-[2,2-dimethylpropane-1,3-diylbis(nitrilomethanylylidene)]diphenolato}-1:2κ6O,N,N',O':O,O';2:3κ6O,O':O,N,N',O'-tricadmium(II) top
Crystal data top
[Cd3(C19H18Cl2N2O2)2(C2H3O2)2]F(000) = 2392.00
Mr = 1209.83Dx = 1.799 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71075 Å
Hall symbol: -P 2ac 2abCell parameters from 65865 reflections
a = 19.3078 (15) Åθ = 3.2–27.5°
b = 11.2651 (8) ŵ = 1.71 mm1
c = 20.535 (3) ÅT = 123 K
V = 4466.5 (8) Å3Prism, colorless
Z = 40.21 × 0.16 × 0.11 mm
Data collection top
Rigaku RAPID-HR
diffractometer
4990 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.025
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 2424
Tmin = 0.727, Tmax = 0.828k = 1414
70676 measured reflectionsl = 2626
5107 independent reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.019Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.058H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.043P)2 + 1.9282P]
where P = (Fo2 + 2Fc2)/3
5107 reflections(Δ/σ)max = 0.002
280 parametersΔρmax = 0.43 e Å3
0 restraintsΔρmin = 0.84 e Å3
Primary atom site location: structure-invariant direct methods
Crystal data top
[Cd3(C19H18Cl2N2O2)2(C2H3O2)2]V = 4466.5 (8) Å3
Mr = 1209.83Z = 4
Orthorhombic, PbcaMo Kα radiation
a = 19.3078 (15) ŵ = 1.71 mm1
b = 11.2651 (8) ÅT = 123 K
c = 20.535 (3) Å0.21 × 0.16 × 0.11 mm
Data collection top
Rigaku RAPID-HR
diffractometer
5107 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
4990 reflections with F2 > 2.0σ(F2)
Tmin = 0.727, Tmax = 0.828Rint = 0.025
70676 measured reflectionsθmax = 27.5°
Refinement top
R[F2 > 2σ(F2)] = 0.019H-atom parameters constrained
wR(F2) = 0.058Δρmax = 0.43 e Å3
S = 1.00Δρmin = 0.84 e Å3
5107 reflectionsAbsolute structure: ?
280 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cd10.362773 (5)0.859740 (9)0.441968 (5)0.02095 (5)
Cd20.50001.00000.50000.01883 (5)
Cl10.51482 (2)1.15865 (3)0.144318 (18)0.02734 (8)
Cl20.20809 (2)1.33156 (4)0.66126 (2)0.03710 (10)
O10.45450 (5)0.95298 (10)0.40088 (5)0.0225 (2)
O20.38433 (5)0.99130 (10)0.52101 (6)0.0257 (3)
O30.40248 (6)0.70129 (10)0.48903 (5)0.0250 (3)
O40.49801 (6)0.79948 (11)0.51990 (7)0.0299 (3)
N10.32621 (6)0.85897 (10)0.33787 (6)0.0212 (3)
N20.25153 (6)0.89528 (12)0.46924 (6)0.0251 (3)
C10.46601 (7)0.99631 (12)0.34260 (7)0.0194 (3)
C20.52539 (7)1.06800 (13)0.33204 (7)0.0226 (3)
C30.53978 (8)1.11685 (13)0.27195 (7)0.0237 (3)
C40.49576 (7)1.09536 (13)0.21952 (7)0.0214 (3)
C50.43805 (7)1.02528 (13)0.22745 (7)0.0206 (3)
C60.42155 (7)0.97504 (12)0.28852 (7)0.0192 (3)
C70.35682 (7)0.90848 (13)0.28945 (7)0.0208 (3)
C80.26034 (8)0.79767 (13)0.32396 (8)0.0269 (3)
C90.19671 (8)0.84468 (14)0.36087 (8)0.0258 (3)
C100.19962 (8)0.82302 (16)0.43504 (8)0.0300 (4)
C110.18625 (9)0.97609 (16)0.34678 (9)0.0350 (4)
C120.13541 (9)0.7716 (3)0.33557 (11)0.0470 (6)
C130.22970 (8)0.97577 (17)0.50828 (8)0.0267 (3)
C140.26924 (7)1.06011 (15)0.54673 (7)0.0243 (3)
C150.22917 (8)1.14259 (15)0.58208 (8)0.0276 (4)
C160.25948 (8)1.22761 (15)0.62020 (7)0.0280 (4)
C170.33148 (8)1.23407 (15)0.62587 (8)0.0290 (4)
C180.37173 (8)1.15406 (15)0.59164 (8)0.0264 (4)
C190.34295 (8)1.06565 (14)0.55137 (7)0.0224 (3)
C200.45884 (8)0.71155 (13)0.52040 (7)0.0230 (3)
C210.47888 (10)0.60752 (18)0.56294 (10)0.0379 (4)
H20.55611.08270.36730.0271*
H30.57971.16510.26630.0284*
H50.40881.01040.19120.0247*
H70.33420.90060.24860.0250*
H8A0.26610.71250.33450.0322*
H8B0.25100.80360.27670.0322*
H10A0.15340.84000.45380.0360*
H10B0.20990.73810.44290.0360*
H11A0.14551.00480.37050.0420*
H11B0.17930.98760.29990.0420*
H11C0.22721.02050.36090.0420*
H12A0.12830.78840.28920.0564*
H12B0.09350.79280.35990.0564*
H12C0.14520.68690.34140.0564*
H130.18080.98100.51270.0320*
H150.18011.13900.57940.0332*
H170.35241.29250.65280.0348*
H180.42071.15890.59540.0317*
H21A0.47600.63090.60880.0454*
H21B0.52640.58310.55270.0454*
H21C0.44720.54120.55480.0454*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.01340 (7)0.02433 (7)0.02512 (8)0.00059 (3)0.00053 (3)0.00617 (4)
Cd20.01134 (8)0.02545 (9)0.01971 (9)0.00049 (5)0.00088 (5)0.00179 (5)
Cl10.02882 (18)0.03126 (18)0.02194 (17)0.00684 (14)0.00090 (14)0.00652 (13)
Cl20.0367 (3)0.0413 (3)0.0332 (2)0.01901 (18)0.01043 (17)0.00549 (17)
O10.0169 (5)0.0313 (6)0.0192 (5)0.0029 (4)0.0008 (4)0.0037 (4)
O20.0130 (5)0.0361 (6)0.0279 (6)0.0022 (4)0.0028 (5)0.0027 (5)
O30.0213 (5)0.0280 (6)0.0257 (5)0.0032 (5)0.0015 (4)0.0065 (4)
O40.0257 (6)0.0267 (6)0.0372 (7)0.0003 (4)0.0035 (5)0.0063 (5)
N10.0161 (6)0.0207 (6)0.0269 (7)0.0006 (5)0.0010 (5)0.0003 (5)
N20.0147 (6)0.0366 (7)0.0241 (7)0.0010 (6)0.0008 (5)0.0066 (5)
C10.0156 (7)0.0212 (7)0.0214 (7)0.0021 (5)0.0024 (6)0.0014 (5)
C20.0158 (7)0.0299 (7)0.0219 (7)0.0024 (6)0.0010 (5)0.0017 (6)
C30.0177 (7)0.0270 (7)0.0263 (7)0.0040 (6)0.0016 (6)0.0014 (6)
C40.0210 (7)0.0232 (7)0.0200 (7)0.0003 (5)0.0026 (5)0.0029 (6)
C50.0187 (7)0.0228 (6)0.0203 (7)0.0007 (6)0.0012 (5)0.0006 (6)
C60.0157 (6)0.0194 (6)0.0224 (7)0.0010 (5)0.0019 (5)0.0007 (5)
C70.0176 (7)0.0208 (7)0.0241 (7)0.0008 (5)0.0004 (5)0.0033 (6)
C80.0214 (7)0.0223 (7)0.0369 (8)0.0065 (6)0.0044 (6)0.0052 (6)
C90.0176 (7)0.0291 (8)0.0306 (8)0.0044 (6)0.0003 (6)0.0040 (6)
C100.0177 (7)0.0377 (9)0.0346 (9)0.0084 (7)0.0026 (6)0.0049 (7)
C110.0314 (9)0.0352 (9)0.0383 (9)0.0094 (7)0.0095 (8)0.0005 (8)
C120.0240 (9)0.0685 (15)0.0485 (12)0.0192 (9)0.0050 (8)0.0235 (11)
C130.0124 (7)0.0436 (9)0.0241 (7)0.0026 (7)0.0018 (6)0.0069 (7)
C140.0163 (7)0.0363 (8)0.0202 (7)0.0053 (6)0.0014 (5)0.0065 (6)
C150.0168 (7)0.0435 (10)0.0225 (8)0.0096 (6)0.0038 (6)0.0092 (6)
C160.0263 (8)0.0345 (8)0.0232 (7)0.0124 (7)0.0062 (6)0.0062 (6)
C170.0266 (8)0.0328 (8)0.0276 (8)0.0027 (7)0.0027 (6)0.0011 (7)
C180.0181 (7)0.0338 (8)0.0273 (8)0.0029 (6)0.0008 (6)0.0020 (6)
C190.0151 (7)0.0308 (8)0.0213 (7)0.0033 (6)0.0027 (5)0.0058 (6)
C200.0210 (7)0.0262 (7)0.0218 (7)0.0046 (6)0.0051 (6)0.0042 (6)
C210.0333 (10)0.0339 (9)0.0463 (11)0.0015 (8)0.0108 (8)0.0164 (8)
Geometric parameters (Å, º) top
Cd1—O12.2253 (11)C9—C121.532 (3)
Cd1—O22.2370 (12)C13—C141.452 (3)
Cd1—O32.1698 (12)C14—C151.410 (3)
Cd1—N12.2513 (13)C14—C191.428 (2)
Cd1—N22.2555 (12)C15—C161.368 (3)
Cd2—O12.2794 (11)C16—C171.397 (3)
Cd2—O1i2.2794 (11)C17—C181.382 (3)
Cd2—O22.2767 (10)C18—C191.409 (3)
Cd2—O2i2.2767 (10)C20—C211.512 (3)
Cd2—O42.2959 (13)C2—H20.950
Cd2—O4i2.2959 (13)C3—H30.950
Cl1—C41.7403 (15)C5—H50.950
Cl2—C161.7512 (17)C7—H70.950
O1—C11.3115 (18)C8—H8A0.990
O2—C191.3147 (19)C8—H8B0.990
O3—C201.2698 (19)C10—H10A0.990
O4—C201.246 (2)C10—H10B0.990
N1—C71.2842 (19)C11—H11A0.980
N1—C81.475 (2)C11—H11B0.980
N2—C101.470 (2)C11—H11C0.980
N2—C131.282 (3)C12—H12A0.980
C1—C21.419 (2)C12—H12B0.980
C1—C61.424 (2)C12—H12C0.980
C2—C31.379 (2)C13—H130.950
C3—C41.393 (2)C15—H150.950
C4—C51.375 (2)C17—H170.950
C5—C61.412 (2)C18—H180.950
C6—C71.458 (2)C21—H21A0.980
C8—C91.538 (3)C21—H21B0.980
C9—C101.544 (3)C21—H21C0.980
C9—C111.522 (3)
O1—Cd1—O279.30 (4)N2—C13—C14129.06 (14)
O1—Cd1—O3106.02 (5)C13—C14—C15114.99 (13)
O1—Cd1—N183.76 (4)C13—C14—C19126.08 (14)
O1—Cd1—N2140.20 (5)C15—C14—C19118.93 (14)
O2—Cd1—O398.98 (5)C14—C15—C16121.40 (15)
O2—Cd1—N1138.58 (5)Cl2—C16—C15120.08 (12)
O2—Cd1—N283.07 (5)Cl2—C16—C17119.27 (13)
O3—Cd1—N1122.04 (4)C15—C16—C17120.65 (15)
O3—Cd1—N2111.83 (5)C16—C17—C18118.89 (15)
N1—Cd1—N286.44 (5)C17—C18—C19122.53 (15)
O1—Cd2—O1i180.00 (6)O2—C19—C14123.11 (14)
O1—Cd2—O277.36 (4)O2—C19—C18119.28 (14)
O1—Cd2—O2i102.64 (4)C14—C19—C18117.60 (14)
O1—Cd2—O485.63 (5)O3—C20—O4126.03 (15)
O1—Cd2—O4i94.37 (5)O3—C20—C21116.22 (14)
O1i—Cd2—O2102.64 (4)O4—C20—C21117.74 (15)
O1i—Cd2—O2i77.36 (4)C1—C2—H2119.118
O1i—Cd2—O494.37 (5)C3—C2—H2119.114
O1i—Cd2—O4i85.63 (5)C2—C3—H3120.024
O2—Cd2—O2i180.00 (6)C4—C3—H3120.026
O2—Cd2—O484.69 (4)C4—C5—H5119.399
O2—Cd2—O4i95.31 (4)C6—C5—H5119.406
O2i—Cd2—O495.31 (4)N1—C7—H7115.542
O2i—Cd2—O4i84.69 (4)C6—C7—H7115.541
O4—Cd2—O4i180.00 (7)N1—C8—H8A108.369
Cd1—O1—Cd294.46 (4)N1—C8—H8B108.371
Cd1—O1—C1131.04 (9)C9—C8—H8A108.384
Cd2—O1—C1131.54 (9)C9—C8—H8B108.387
Cd1—O2—Cd294.22 (5)H8A—C8—H8B107.442
Cd1—O2—C19130.77 (10)N2—C10—H10A108.721
Cd2—O2—C19131.19 (10)N2—C10—H10B108.717
Cd1—O3—C20116.99 (10)C9—C10—H10A108.725
Cd2—O4—C20142.52 (11)C9—C10—H10B108.728
Cd1—N1—C7126.10 (10)H10A—C10—H10B107.633
Cd1—N1—C8117.13 (10)C9—C11—H11A109.477
C7—N1—C8116.76 (13)C9—C11—H11B109.476
Cd1—N2—C10115.62 (10)C9—C11—H11C109.471
Cd1—N2—C13126.45 (11)H11A—C11—H11B109.472
C10—N2—C13117.80 (13)H11A—C11—H11C109.461
O1—C1—C2119.22 (13)H11B—C11—H11C109.470
O1—C1—C6123.16 (13)C9—C12—H12A109.468
C2—C1—C6117.62 (13)C9—C12—H12B109.476
C1—C2—C3121.77 (14)C9—C12—H12C109.467
C2—C3—C4119.95 (14)H12A—C12—H12B109.466
Cl1—C4—C3119.06 (11)H12A—C12—H12C109.472
Cl1—C4—C5120.77 (11)H12B—C12—H12C109.479
C3—C4—C5120.17 (14)N2—C13—H13115.482
C4—C5—C6121.20 (13)C14—C13—H13115.461
C1—C6—C5119.28 (13)C14—C15—H15119.306
C1—C6—C7126.39 (13)C16—C15—H15119.296
C5—C6—C7114.28 (13)C16—C17—H17120.554
N1—C7—C6128.92 (14)C18—C17—H17120.553
N1—C8—C9115.61 (13)C17—C18—H18118.727
C8—C9—C10113.76 (13)C19—C18—H18118.741
C8—C9—C11110.32 (13)C20—C21—H21A109.462
C8—C9—C12105.37 (14)C20—C21—H21B109.465
C10—C9—C11110.26 (14)C20—C21—H21C109.462
C10—C9—C12106.13 (14)H21A—C21—H21B109.487
C11—C9—C12110.83 (15)H21A—C21—H21C109.485
N2—C10—C9114.13 (14)H21B—C21—H21C109.466
O1—Cd1—O2—Cd228.74 (4)O4—Cd2—O2—C19142.33 (11)
O1—Cd1—O2—C19130.57 (11)O2—Cd2—O4i—C20i156.99 (16)
O2—Cd1—O1—Cd228.71 (4)O4i—Cd2—O2—Cd1121.51 (5)
O2—Cd1—O1—C1133.05 (10)O4i—Cd2—O2—C1937.67 (11)
O1—Cd1—O3—C2039.81 (8)O2i—Cd2—O4—C20156.99 (16)
O3—Cd1—O1—Cd267.66 (5)O4—Cd2—O2i—Cd1i121.51 (5)
O3—Cd1—O1—C1130.58 (9)O4—Cd2—O2i—C19i37.67 (11)
O1—Cd1—N1—C74.33 (9)O2i—Cd2—O4i—C20i23.01 (16)
O1—Cd1—N1—C8176.77 (8)O4i—Cd2—O2i—Cd1i58.49 (5)
N1—Cd1—O1—Cd2170.75 (5)O4i—Cd2—O2i—C19i142.33 (11)
N1—Cd1—O1—C18.98 (9)Cd1—O1—C1—C2170.40 (7)
O1—Cd1—N2—C10120.25 (8)Cd1—O1—C1—C69.61 (19)
O1—Cd1—N2—C1355.53 (13)Cd2—O1—C1—C215.04 (18)
N2—Cd1—O1—Cd293.98 (7)Cd2—O1—C1—C6164.98 (8)
N2—Cd1—O1—C167.79 (12)Cd1—O2—C19—C1412.4 (2)
O2—Cd1—O3—C2041.55 (8)Cd1—O2—C19—C18168.95 (8)
O3—Cd1—O2—Cd276.00 (5)Cd2—O2—C19—C14164.46 (9)
O3—Cd1—O2—C19124.68 (10)Cd2—O2—C19—C1816.9 (2)
O2—Cd1—N1—C761.70 (12)Cd1—O3—C20—O49.83 (19)
O2—Cd1—N1—C8117.20 (7)Cd1—O3—C20—C21169.05 (7)
N1—Cd1—O2—Cd296.32 (6)Cd2—O4—C20—O322.9 (3)
N1—Cd1—O2—C1962.99 (12)Cd2—O4—C20—C21155.94 (13)
O2—Cd1—N2—C10175.73 (9)Cd1—N1—C7—C60.7 (2)
O2—Cd1—N2—C138.50 (10)Cd1—N1—C8—C958.78 (13)
N2—Cd1—O2—Cd2172.89 (5)C7—N1—C8—C9120.22 (14)
N2—Cd1—O2—C1913.58 (10)C8—N1—C7—C6179.65 (12)
O3—Cd1—N1—C7109.35 (9)Cd1—N2—C10—C964.13 (14)
O3—Cd1—N1—C871.75 (9)Cd1—N2—C13—C143.0 (3)
N1—Cd1—O3—C20132.47 (7)C10—N2—C13—C14178.65 (14)
O3—Cd1—N2—C1078.79 (8)C13—N2—C10—C9112.03 (16)
O3—Cd1—N2—C13105.43 (10)O1—C1—C2—C3179.39 (12)
N2—Cd1—O3—C20127.64 (8)O1—C1—C6—C5179.95 (11)
N1—Cd1—N2—C1044.42 (8)O1—C1—C6—C72.7 (3)
N1—Cd1—N2—C13131.36 (10)C2—C1—C6—C50.03 (19)
N2—Cd1—N1—C7137.03 (10)C2—C1—C6—C7177.28 (12)
N2—Cd1—N1—C841.86 (8)C6—C1—C2—C30.6 (2)
O1—Cd2—O2—Cd128.21 (4)C1—C2—C3—C40.6 (2)
O1—Cd2—O2—C19130.97 (11)C2—C3—C4—Cl1179.67 (12)
O2—Cd2—O1—Cd128.38 (4)C2—C3—C4—C50.2 (2)
O2—Cd2—O1—C1133.23 (10)Cl1—C4—C5—C6179.00 (9)
O1—Cd2—O2i—Cd1i151.79 (4)C3—C4—C5—C60.8 (2)
O1—Cd2—O2i—C19i49.03 (11)C4—C5—C6—C10.8 (2)
O2i—Cd2—O1—Cd1151.62 (4)C4—C5—C6—C7176.87 (12)
O2i—Cd2—O1—C146.77 (10)C1—C6—C7—N11.8 (3)
O1—Cd2—O4—C2054.67 (16)C5—C6—C7—N1175.58 (13)
O4—Cd2—O1—Cd157.15 (5)N1—C8—C9—C1066.99 (16)
O4—Cd2—O1—C1141.24 (9)N1—C8—C9—C1157.51 (16)
O1—Cd2—O4i—C20i125.33 (16)N1—C8—C9—C12177.18 (11)
O4i—Cd2—O1—Cd1122.85 (5)C8—C9—C10—N270.18 (17)
O4i—Cd2—O1—C138.76 (9)C11—C9—C10—N254.36 (17)
O1i—Cd2—O2—Cd1151.79 (4)C12—C9—C10—N2174.44 (14)
O1i—Cd2—O2—C1949.03 (11)N2—C13—C14—C15176.27 (16)
O2—Cd2—O1i—Cd1i151.62 (4)N2—C13—C14—C193.8 (3)
O2—Cd2—O1i—C1i46.77 (10)C13—C14—C15—C16179.71 (14)
O1i—Cd2—O2i—Cd1i28.21 (4)C13—C14—C19—O21.1 (3)
O1i—Cd2—O2i—C19i130.97 (11)C13—C14—C19—C18179.75 (14)
O2i—Cd2—O1i—Cd1i28.38 (4)C15—C14—C19—O2178.88 (14)
O2i—Cd2—O1i—C1i133.23 (10)C15—C14—C19—C180.2 (2)
O1i—Cd2—O4—C20125.33 (16)C19—C14—C15—C160.3 (3)
O4—Cd2—O1i—Cd1i122.85 (5)C14—C15—C16—Cl2177.90 (13)
O4—Cd2—O1i—C1i38.76 (9)C14—C15—C16—C170.9 (3)
O1i—Cd2—O4i—C20i54.67 (16)Cl2—C16—C17—C18177.94 (10)
O4i—Cd2—O1i—Cd1i57.15 (5)C15—C16—C17—C180.8 (3)
O4i—Cd2—O1i—C1i141.24 (9)C16—C17—C18—C190.3 (3)
O2—Cd2—O4—C2023.01 (16)C17—C18—C19—O2178.95 (14)
O4—Cd2—O2—Cd158.49 (5)C17—C18—C19—C140.2 (3)
Symmetry code: (i) x+1, y+2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3ii0.952.543.248 (2)131
Symmetry code: (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C15—H15···O3i0.952.543.248 (2)131
Symmetry code: (i) x+1/2, y+1/2, z.
Acknowledgements top

This study was supported financially in part by Grants-in-Aid for Scientific Research (No. 23550094) from the Japan Society for the Promotion of Science, and was performed under the Cooperative Research Program of "Network Joint Research Center for Materials and Devices".

references
References top

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Atakol, O., Aksu, M., Ercan, F., Arıcı, C., Tahir, M. N. & Ülkü, D. (1999). Acta Cryst. C55, 1072–1075.

Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513.

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. 34, 1555–1573.

Carlucci, L., Ciani, G., Proserpio, D. M. & Visconti, M. (2011). CrystEngComm, 13, 761–764.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Das, L. K., Biswas, A., Frontera, A. & Ghosh, A. (2013). Polyhedron, 52, 1416–1424.

Das, M. C., Xiang, S., Zhang, Z. & Chen, B. (2011). Angew. Chem. Int. Ed. 50, 10510–10520.

Du, D.-Y., Qin, J.-S., Sun, C.-X., Wang, X.-L., Zhang, S.-R., Shen, P., Li, S.-L., Su, Z.-M. & Lan, Y.-Q. (2012). J. Mater. Chem. 22, 19673–19678.

Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Kubono, K., Tani, K. & Yokoi, K. (2012). Acta Cryst. E68, m1430–m1431.

Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Xue, L. W., Han, Y. J., Zhao, G. Q. & Feg, Y. X. (2012). Russ. J. Coord. Chem. 38, 24–28.