organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

2,2,2-Tri­fluoro-N-(2-iodo­phen­yl)acetamide

aJiangxi Key Laboratory of Organic Chemistry, Jiangxi Science & Technology Normal University, Nanchang 330013, People's Republic of China
*Correspondence e-mail: ouyangruchun@aliyun.com

(Received 12 October 2013; accepted 31 October 2013; online 6 November 2013)

The three F atoms in the title compound, C8H5F3INO, are disordered over two sets of sites [relative occupancies = 0.615 (14):0.385 (14)]. In the crystal, mol­ecules are linked by N—H⋯O hydrogen bonds, forming chains running along the c-axis direction. The dihedral angle between the ring and the amide group is 62.1 (3)°.

Related literature

For effects of flourine on the properties of compounds, see: Jeschke (2004[Jeschke, P. (2004). Chembiochem, 5, 570-589.]); Mueller et al. (2007[Mueller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881-1886.]); Purser et al. (2008[Purser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320-330.]). For the synthesis, see: Konfink et al. (2007[Konfink, C. C., Blank, B., Pagano, B., Gotz, N. & Knochel, P. (2007). Chem. Commun. 19, 1954-1956.]).

[Scheme 1]

Experimental

Crystal data
  • C8H5F3INO

  • Mr = 315.02

  • Tetragonal, I 41 /a

  • a = 15.8871 (1) Å

  • c = 15.9300 (2) Å

  • V = 4020.7 (6) Å3

  • Z = 16

  • Mo Kα radiation

  • μ = 3.20 mm−1

  • T = 293 K

  • 0.30 × 0.20 × 0.20 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]) Tmin = 0.447, Tmax = 0.567

  • 6063 measured reflections

  • 1775 independent reflections

  • 1153 reflections with I > 2σ(I)

  • Rint = 0.055

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.105

  • S = 1.06

  • 1775 reflections

  • 155 parameters

  • 450 restraints

  • H-atom parameters constrained

  • Δρmax = 0.42 e Å−3

  • Δρmin = −0.54 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯O1i 0.86 2.08 2.917 (6) 163
Symmetry code: (i) [y+{\script{1\over 4}}, -x+{\script{5\over 4}}, z+{\script{1\over 4}}].

Data collection: CrysAlis PRO (Agilent, 2011[Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.

Supporting information


Comment top

Aromatic compounds play an important role in the pharmaceutical and agrochemical industries as important intermediates. The fluorine atom has a strong electron withdrawing character and small atomic radius. Introduction of one or more F atoms can change the physiological activity, pharmacological activity and metabolic stability properties of the compound (Jeschke, 2004; Mueller, et al., 2007; Purser, et al., 2008). In our study, we report an aromatic compounds containing fluorine, 2,2,2-trifluoro-N-(2-iodophenyl)acetamide, which could be used in the synthesis of many bioactive compounds.

There is a single molecule in the asymmetric unit of the title compound 2,2,2-trifluoro-N-(2-iodophenyl)acetamide, C8H5F3INO. In the crystal, The three F atoms are disordered over two sites [relative occupancies 0.615 (14):0.385 (14)]. The crystal packing is stabilized by N1—H1···O1 hydrogen bond that connect molecules into chains running along the c direction.

Related literature top

For effects of flourine on the properties of compounds, see: Jeschke (2004); Mueller et al. (2007); Purser et al. (2008). For the synthesis, see: Konfink et al. (2007). Mueller et al. (2007); Purser et al. (2008). For synthesis, see: Konfink et al. (2007).

Experimental top

The title compound was synthesized according to the previously reported procedure (Konfink, et al., 2007).

Refinement top

H atoms bond to N were located in a difference map and refined with N—H = 0.86 Å and Uiso(H) = 1.2Ueq(N) other H atoms attached to C were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl) or 0.93 Å (aromatic) and with Uiso(H) = 1.2Ueq(aromatic) or Uiso(H) = 1.5Ueq(methyl).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Thermal ellipsoid plot of C8H5F3INO. Ellipsoids are drawn at the 30% probability level and H atoms are represented as small spheres of arbitrary radius.
2,2,2-Trifluoro-N-(2-iodophenyl)acetamide top
Crystal data top
C8H5F3INODx = 2.075 Mg m3
Mr = 315.02Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I41/aCell parameters from 1114 reflections
Hall symbol: -I 4adθ = 3.1–21.8°
a = 15.8871 (1) ŵ = 3.20 mm1
c = 15.9300 (2) ÅT = 293 K
V = 4020.7 (6) Å3Block, colourless
Z = 160.30 × 0.20 × 0.20 mm
F(000) = 2368
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1775 independent reflections
Radiation source: fine-focus sealed tube1153 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
h = 1715
Tmin = 0.447, Tmax = 0.567k = 1812
6063 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0324P)2 + 3.0148P]
where P = (Fo2 + 2Fc2)/3
1775 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.42 e Å3
450 restraintsΔρmin = 0.54 e Å3
Crystal data top
C8H5F3INOZ = 16
Mr = 315.02Mo Kα radiation
Tetragonal, I41/aµ = 3.20 mm1
a = 15.8871 (1) ÅT = 293 K
c = 15.9300 (2) Å0.30 × 0.20 × 0.20 mm
V = 4020.7 (6) Å3
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
1775 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
1153 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.567Rint = 0.055
6063 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.044450 restraints
wR(F2) = 0.105H-atom parameters constrained
S = 1.06Δρmax = 0.42 e Å3
1775 reflectionsΔρmin = 0.54 e Å3
155 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.61704 (3)0.35482 (3)0.43754 (3)0.0704 (2)
N10.7883 (3)0.4465 (3)0.5004 (3)0.0465 (12)
H10.77710.41750.54460.056*
O10.8853 (3)0.4661 (3)0.3977 (2)0.0627 (13)
F10.9082 (8)0.3600 (9)0.5849 (6)0.095 (4)0.615 (14)
F20.9342 (9)0.3088 (7)0.4454 (6)0.098 (4)0.615 (14)
F30.9903 (8)0.4012 (8)0.5219 (9)0.109 (4)0.615 (14)
F1'0.8791 (11)0.3219 (12)0.5583 (13)0.081 (5)0.385 (14)
F2'0.8837 (13)0.2878 (9)0.4878 (15)0.099 (5)0.385 (14)
F3'0.9922 (12)0.3650 (14)0.4827 (12)0.091 (5)0.385 (14)
C10.6481 (4)0.4831 (4)0.4479 (3)0.0468 (15)
C20.5885 (4)0.5432 (4)0.4246 (4)0.0594 (18)
H20.53420.52720.40990.071*
C30.6121 (5)0.6273 (4)0.4237 (4)0.0649 (19)
H30.57280.66820.40940.078*
C40.6921 (5)0.6507 (5)0.4434 (4)0.0634 (18)
H40.70760.70710.44000.076*
C50.7503 (4)0.5913 (4)0.4685 (4)0.0543 (16)
H50.80450.60790.48300.065*
C60.7280 (4)0.5074 (4)0.4720 (3)0.0440 (14)
C70.8600 (4)0.4334 (4)0.4613 (3)0.0431 (14)
C80.9161 (5)0.3650 (5)0.5022 (5)0.0577 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0683 (4)0.0521 (4)0.0909 (4)0.0005 (2)0.0240 (3)0.0036 (3)
N10.052 (3)0.047 (3)0.041 (2)0.010 (2)0.001 (2)0.008 (2)
O10.055 (3)0.086 (4)0.047 (2)0.011 (3)0.007 (2)0.018 (2)
F10.112 (8)0.113 (8)0.061 (5)0.062 (6)0.008 (5)0.010 (5)
F20.129 (8)0.082 (6)0.083 (5)0.057 (6)0.001 (6)0.014 (5)
F30.077 (6)0.118 (8)0.133 (8)0.006 (6)0.065 (6)0.013 (6)
F1'0.084 (9)0.087 (10)0.073 (9)0.015 (7)0.017 (7)0.041 (8)
F2'0.112 (10)0.066 (8)0.118 (10)0.016 (7)0.039 (9)0.003 (8)
F3'0.063 (8)0.116 (11)0.092 (9)0.036 (8)0.018 (8)0.027 (8)
C10.055 (4)0.040 (3)0.045 (3)0.008 (3)0.002 (3)0.001 (3)
C20.055 (4)0.058 (4)0.065 (4)0.022 (3)0.007 (3)0.001 (3)
C30.080 (5)0.046 (4)0.069 (4)0.026 (4)0.007 (4)0.005 (3)
C40.078 (5)0.045 (4)0.067 (4)0.013 (4)0.004 (4)0.001 (3)
C50.066 (4)0.048 (4)0.049 (3)0.003 (3)0.004 (3)0.001 (3)
C60.053 (4)0.042 (3)0.037 (3)0.014 (3)0.006 (3)0.004 (3)
C70.047 (4)0.045 (4)0.037 (3)0.000 (3)0.005 (3)0.005 (3)
C80.052 (4)0.062 (5)0.059 (4)0.015 (4)0.002 (4)0.004 (4)
Geometric parameters (Å, º) top
I1—C12.103 (6)C1—C61.382 (8)
N1—C71.316 (7)C1—C21.394 (8)
N1—C61.433 (7)C2—C31.389 (9)
N1—H10.8600C2—H20.9300
O1—C71.208 (6)C3—C41.361 (9)
F1—C81.326 (12)C3—H30.9300
F2—C81.303 (11)C4—C51.380 (9)
F3—C81.349 (13)C4—H40.9300
F1'—C81.271 (16)C5—C61.381 (8)
F2'—C81.351 (16)C5—H50.9300
F3'—C81.248 (18)C7—C81.548 (9)
C7—N1—C6122.5 (5)C5—C6—C1119.6 (6)
C7—N1—H1118.8C5—C6—N1119.6 (6)
C6—N1—H1118.8C1—C6—N1120.8 (6)
C6—C1—C2120.4 (6)O1—C7—N1128.1 (6)
C6—C1—I1120.5 (4)O1—C7—C8117.6 (6)
C2—C1—I1118.9 (5)N1—C7—C8114.3 (6)
C3—C2—C1118.6 (7)F3'—C8—F1'128.5 (12)
C3—C2—H2120.7F2—C8—F1132.0 (10)
C1—C2—H2120.7F2—C8—F3105.1 (10)
C4—C3—C2120.8 (7)F1—C8—F382.9 (11)
C4—C3—H3119.6F3'—C8—F2'109.1 (13)
C2—C3—H3119.6F1'—C8—F2'56.9 (16)
C3—C4—C5120.4 (7)F3'—C8—C7116.9 (10)
C3—C4—H4119.8F1'—C8—C7114.1 (9)
C5—C4—H4119.8F2—C8—C7108.4 (6)
C4—C5—C6120.0 (7)F1—C8—C7113.9 (7)
C4—C5—H5120.0F3—C8—C7107.6 (8)
C6—C5—H5120.0F2'—C8—C7110.3 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.917 (6)163
Symmetry code: (i) y+1/4, x+5/4, z+1/4.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.082.917 (6)163
Symmetry code: (i) y+1/4, x+5/4, z+1/4.
 

Acknowledgements

This work was supported by the Science Fund of the Education Office of Jiangxi (GJJ12583) and the Bureau of Science and Technology of Nanchang City.

References

First citationAgilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
First citationJeschke, P. (2004). Chembiochem, 5, 570–589.  Web of Science CrossRef CAS
First citationKonfink, C. C., Blank, B., Pagano, B., Gotz, N. & Knochel, P. (2007). Chem. Commun. 19, 1954–1956.
First citationMueller, K., Faeh, C. & Diederich, F. (2007). Science, 317, 1881–1886.  Web of Science CrossRef PubMed CAS
First citationPurser, S., Moore, P. R., Swallow, S. & Gouverneur, V. (2008). Chem. Soc. Rev. 37, 320–330.  Web of Science CrossRef PubMed CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds