supplementary materials


fj2647 scheme

Acta Cryst. (2013). E69, m643-m644    [ doi:10.1107/S1600536813030122 ]

Hexa-[mu]-acetato-1:2[kappa]4O,O';1:2[kappa]2O:O;2:3[kappa]4O,O';2:3[kappa]2O:O-bis­(4,4'-dimethyl-2,2'-bi­pyridine)-1[kappa]2N,N';3[kappa]2N,N'-2-calcium-1,3-dizinc

A. Pramanik, F. R. Fronczek, R. Venkatraman and M. A. Hossain

Abstract top

In the centrosymmetric trinuclear ZnII...CaII...ZnII title complex, [CaZn2(CH3COO)6(C12H12N2)2], the CaII ion lies on an inversion centre and is octa­hedrally coordinated by six acetate O atoms. The ZnII ion is coordinated by two N atoms from a bidentate di­methyl­bipyridine ligand and three O atoms from acetate ligands bridging to the CaII ion, leading to a distorted square-pyramidal coordination sphere. The Zn...Ca distance is 3.4668 (5) Å.

Comment top

Multimetallic coordination complexes have many practical applications in a number of areas including molecular magnetism, crystal engineering, catalysis, gas storage, ion exchange, nonlinear optics, and biomimetic materials (Rao et al., 2004). In general, multimetallic complexes invoves azido, cyano, isocyanate, isothiocyanate, hydroxo, oxo and carboxylate ions (Herold & Lippard, 1997). Multimetallic complexation is also important in many biological systems; for example, in metalloenzymes where carboxylate ions serve as bidentate ligands showing three different coordination modes: syn-syn, syn-anti and anti-anti (Voegtli et al., 2000). However, as compared to traditional mononuclear metal complexes, the chemistry of multimetallic complexes with well established structures is much under developed. In our continuing interests in dinuclear metal complexes (Saeed et al., 2010; Mendy, et al., 2010) for anion binding, we attempted to obtain zinc complex of mixed ligands with 4,4'dimethyl-2,2'-bipyridine and hexa N-substituted (p-cyano benzamido) para xylyl based octa-aza cryptand. However, single-crystal structure analysis reveals the formation of the title compound. The source of calcium could be a contaminant from the reagents used for this reaction. Herein, we present a structural characterization of 4,4'-dimethyl-2,2'-bipyridine coordinated heterotrinuclear ZnII—CaII—ZnII hexa-carboxylate complex.

The heteronuclear complex is crystallized in triclinic P-1 space group, with one calcium ion, two zinc ions, six acetate and two 4,4'-dimethyl-2,2'-bipyridine groups. As can be seen in Figure 1, one calcium ion is located at the center surrounded by two zinc ions and six acetate ions. Two zinc ions from opposite sides are linearly coordinated with the central calcium ion forming trinuclear ZnII–CaII–ZnII backbone, while six acetate ions are coordinated with six Ca–O bonds. In addition, each zinc is hexacoordinated with two N atoms from one bipyridine and four O atoms from four six acetates, forming a centrosymmetric complex. In the complex, four acetates serve as bidentate ligands to coordinate with both calcium and zinc ions, while each of other two serves as a monodentate ligand for a single zinc ion. Both CaII and ZnII ions are connected by two pairs of carboxylate ligands in syn±syn, and syn±anti bridging modes (Voegtli et al., 2000). Another pair of carboxylates is coordinated with one CaII ion and two ZnII via (O,O') bridges. The distorted square pyramidal geometry around the ZnII ion is completed by the coordination of N atoms of 4,4'-dimethyl-2,2'-bipyridine.

Related literature top

For a review of the coordination chemistry of metal carboxylates, see: Rao et al.(2004). For applications of metal complexes in anion binding, see Saeed et al. (2010); Mendy et al. (2010). In general, multimetallic complexes invoves azido,

cyano, isocyanate, isothiocyanate, hydroxo, oxo and carboxylate ions, see: Herold & Lippard (1997). For coordination modes of carboxylate ions acting as bidentate ligands in metalloenzymes, see: Voegtli et al. (2000). For details of the synthesis, see: Hossain et al. (2010);

Experimental top

4,4'-dimethyl-2,2'-bipyridine (0.5 g, 2.71 mmol) and zinc acetate (0.9 g, 4.1 mmol) of was added to hexa N-substituted (p-cyano benzamido) para xylyl based octa-aza cryptand (0.15 g) in 20 mL of ethanol-water (1:1, v/v) mixture at room temperature (Hossain et al., 2010). The mixture was further diluted with 10 mL DMSO solvent with constant stirring. Only a few crystals were grown after a week, which was characterized by single-crystal diffraction method. Further analysis was not possible because of the small quantity of the product.

Refinement top

H atoms on C were placed in idealized positions with C—H distances 0.95 - 0.98 Å and thereafter treated as riding. Uiso for H was assigned as 1.2 times Ueq of the attached atom (1.5 for methyl). The largest residual density peak was 1.50 Å from O2.

Computing details top

Data collection: COLLECT (Nonius, 2000); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP drawings of the crystal structure and atomic numbering scheme of trinuclear ZnII—CaII—ZnII complex. Ellipsoids are set at the 50% probability level.
Hexa-µ-acetato-1:2κ4O,O';1:2κ2O:O;2:3κ4O,O';2:3κ2O:O-bis(4,4'-dimethyl-2,2'-bipyridine)-1κ2N,N';3κ2N,N'-2-calcium-1,3-dizinc top
Crystal data top
[CaZn2(C2H3O2)6(C12H12N2)2]Z = 1
Mr = 893.56F(000) = 462
Triclinic, P1Dx = 1.545 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.3356 (10) ÅCell parameters from 7990 reflections
b = 8.841 (1) Åθ = 2.5–36.7°
c = 13.696 (2) ŵ = 1.45 mm1
α = 74.103 (7)°T = 100 K
β = 83.263 (6)°Parallelepiped, colorless
γ = 83.560 (7)°0.34 × 0.32 × 0.27 mm
V = 960.6 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
8962 independent reflections
Radiation source: fine-focus sealed tube7497 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ω and φ scansθmax = 36.7°, θmin = 3.0°
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.639, Tmax = 0.699k = 1414
16096 measured reflectionsl = 2222
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086 w = 1/[σ2(Fo2) + (0.0386P)2 + 0.3887P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
8962 reflectionsΔρmax = 0.65 e Å3
256 parametersΔρmin = 0.78 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0061 (13)
Crystal data top
[CaZn2(C2H3O2)6(C12H12N2)2]γ = 83.560 (7)°
Mr = 893.56V = 960.6 (2) Å3
Triclinic, P1Z = 1
a = 8.3356 (10) ÅMo Kα radiation
b = 8.841 (1) ŵ = 1.45 mm1
c = 13.696 (2) ÅT = 100 K
α = 74.103 (7)°0.34 × 0.32 × 0.27 mm
β = 83.263 (6)°
Data collection top
Nonius KappaCCD
diffractometer
8962 independent reflections
Absorption correction: multi-scan
(SCALEPACK; Otwinowski & Minor, 1997)
7497 reflections with I > 2σ(I)
Tmin = 0.639, Tmax = 0.699Rint = 0.025
16096 measured reflectionsθmax = 36.7°
Refinement top
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.086Δρmax = 0.65 e Å3
S = 1.05Δρmin = 0.78 e Å3
8962 reflectionsAbsolute structure: ?
256 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.645512 (17)0.565205 (16)0.245482 (10)0.01344 (4)
Ca10.50000.50000.50000.01472 (6)
O10.42917 (11)0.57148 (11)0.33397 (7)0.01780 (16)
O20.36225 (13)0.71366 (13)0.18192 (8)0.02391 (19)
O30.83825 (11)0.42210 (11)0.30301 (7)0.01864 (16)
O40.69345 (13)0.32456 (12)0.45013 (8)0.02265 (18)
O50.71692 (12)0.76819 (11)0.26269 (7)0.01935 (17)
O60.68069 (13)0.68704 (12)0.43296 (7)0.02151 (18)
N10.73039 (13)0.60239 (13)0.09209 (8)0.01657 (18)
N20.56062 (13)0.37004 (12)0.20333 (8)0.01583 (17)
C10.81557 (16)0.72407 (16)0.04117 (10)0.0197 (2)
H10.82700.80350.07400.024*
C20.88835 (16)0.73989 (19)0.05764 (10)0.0240 (3)
C30.87138 (17)0.62079 (19)0.10347 (10)0.0252 (3)
H30.92150.62550.17010.030*
C40.78117 (17)0.49493 (18)0.05182 (10)0.0222 (2)
H40.76760.41430.08320.027*
C50.71088 (15)0.48875 (15)0.04678 (9)0.0172 (2)
C60.61311 (15)0.35900 (15)0.10892 (9)0.0169 (2)
C70.57756 (16)0.23203 (17)0.07454 (11)0.0218 (2)
H70.61310.22610.00710.026*
C80.48959 (17)0.11521 (16)0.14069 (12)0.0232 (3)
H80.46670.02730.11890.028*
C90.43442 (15)0.12613 (15)0.23931 (11)0.0196 (2)
C100.47342 (15)0.25801 (14)0.26603 (10)0.0176 (2)
H100.43620.26900.33220.021*
C110.9812 (2)0.8811 (2)0.11066 (13)0.0346 (4)
H11A1.03520.86700.17550.052*
H11B1.06250.89150.06730.052*
H11C0.90610.97650.12370.052*
C120.34091 (18)0.00266 (16)0.31539 (13)0.0256 (3)
H12A0.31320.03480.37870.038*
H12B0.40740.09830.32950.038*
H12C0.24130.00900.28760.038*
C130.32312 (15)0.64702 (15)0.27164 (10)0.0181 (2)
C140.14820 (17)0.6467 (2)0.31439 (13)0.0278 (3)
H14A0.08480.73590.27250.042*
H14B0.14000.65620.38450.042*
H14C0.10600.54780.31410.042*
C150.82225 (15)0.33229 (14)0.39256 (10)0.0172 (2)
C160.97115 (18)0.22946 (17)0.43100 (12)0.0258 (3)
H16A1.03920.29060.45690.039*
H16B1.03260.19280.37510.039*
H16C0.93820.13830.48600.039*
C170.71988 (15)0.78611 (14)0.35138 (10)0.0168 (2)
C180.77759 (17)0.93922 (15)0.35734 (11)0.0211 (2)
H18A0.72560.96630.41900.032*
H18B0.74911.02350.29720.032*
H18C0.89550.92710.35970.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01502 (6)0.01454 (7)0.01144 (6)0.00042 (4)0.00181 (4)0.00464 (4)
Ca10.01700 (14)0.01496 (13)0.01184 (13)0.00157 (10)0.00028 (10)0.00328 (10)
O10.0157 (4)0.0207 (4)0.0197 (4)0.0005 (3)0.0035 (3)0.0098 (3)
O20.0267 (5)0.0276 (5)0.0201 (4)0.0007 (4)0.0052 (4)0.0103 (4)
O30.0182 (4)0.0205 (4)0.0170 (4)0.0008 (3)0.0045 (3)0.0043 (3)
O40.0236 (4)0.0183 (4)0.0232 (5)0.0002 (3)0.0002 (4)0.0024 (3)
O50.0234 (4)0.0193 (4)0.0172 (4)0.0026 (3)0.0031 (3)0.0072 (3)
O60.0267 (5)0.0201 (4)0.0180 (4)0.0057 (3)0.0054 (3)0.0026 (3)
N10.0152 (4)0.0210 (5)0.0138 (4)0.0009 (3)0.0031 (3)0.0053 (3)
N20.0169 (4)0.0158 (4)0.0168 (4)0.0015 (3)0.0045 (3)0.0076 (3)
C10.0180 (5)0.0246 (6)0.0152 (5)0.0017 (4)0.0014 (4)0.0032 (4)
C20.0177 (5)0.0345 (7)0.0161 (5)0.0009 (5)0.0013 (4)0.0017 (5)
C30.0210 (6)0.0391 (8)0.0132 (5)0.0048 (5)0.0015 (4)0.0058 (5)
C40.0209 (5)0.0320 (7)0.0149 (5)0.0056 (5)0.0042 (4)0.0104 (5)
C50.0159 (5)0.0235 (5)0.0137 (5)0.0044 (4)0.0050 (4)0.0080 (4)
C60.0154 (5)0.0209 (5)0.0166 (5)0.0041 (4)0.0061 (4)0.0091 (4)
C70.0212 (6)0.0259 (6)0.0234 (6)0.0042 (5)0.0075 (5)0.0152 (5)
C80.0211 (6)0.0225 (6)0.0322 (7)0.0032 (4)0.0095 (5)0.0166 (5)
C90.0166 (5)0.0166 (5)0.0281 (6)0.0024 (4)0.0072 (4)0.0097 (4)
C100.0171 (5)0.0166 (5)0.0211 (5)0.0007 (4)0.0039 (4)0.0081 (4)
C110.0299 (7)0.0446 (9)0.0227 (7)0.0096 (7)0.0040 (6)0.0022 (6)
C120.0218 (6)0.0177 (5)0.0392 (8)0.0020 (4)0.0039 (5)0.0102 (5)
C130.0159 (5)0.0188 (5)0.0241 (6)0.0008 (4)0.0039 (4)0.0129 (4)
C140.0143 (5)0.0355 (7)0.0371 (8)0.0019 (5)0.0008 (5)0.0160 (6)
C150.0204 (5)0.0133 (5)0.0189 (5)0.0013 (4)0.0063 (4)0.0053 (4)
C160.0263 (6)0.0225 (6)0.0279 (7)0.0090 (5)0.0108 (5)0.0066 (5)
C170.0168 (5)0.0155 (5)0.0195 (5)0.0000 (4)0.0049 (4)0.0063 (4)
C180.0259 (6)0.0165 (5)0.0234 (6)0.0039 (4)0.0062 (5)0.0067 (4)
Geometric parameters (Å, º) top
Zn1—O32.0243 (10)C4—C51.3968 (18)
Zn1—O52.0334 (10)C4—H40.9500
Zn1—O12.0556 (10)C5—C61.4887 (19)
Zn1—N12.0851 (11)C6—C71.4023 (18)
Zn1—N22.1741 (10)C7—C81.388 (2)
Zn1—Ca13.4668 (5)C7—H70.9500
Ca1—O4i2.2876 (10)C8—C91.400 (2)
Ca1—O42.2876 (10)C8—H80.9500
Ca1—O6i2.2910 (10)C9—C101.3949 (17)
Ca1—O62.2910 (10)C9—C121.504 (2)
Ca1—O12.3158 (10)C10—H100.9500
Ca1—O1i2.3158 (10)C11—H11A0.9800
Ca1—Zn1i3.4668 (5)C11—H11B0.9800
O1—C131.2994 (16)C11—H11C0.9800
O2—C131.2313 (17)C12—H12A0.9800
O3—C151.2666 (15)C12—H12B0.9800
O4—C151.2520 (17)C12—H12C0.9800
O5—C171.2706 (15)C13—C141.5061 (19)
O6—C171.2509 (16)C14—H14A0.9800
N1—C11.3386 (17)C14—H14B0.9800
N1—C51.3502 (16)C14—H14C0.9800
N2—C101.3401 (17)C15—C161.5106 (18)
N2—C61.3415 (16)C16—H16A0.9800
C1—C21.3935 (19)C16—H16B0.9800
C1—H10.9500C16—H16C0.9800
C2—C31.393 (2)C17—C181.5121 (17)
C2—C111.507 (2)C18—H18A0.9800
C3—C41.391 (2)C18—H18B0.9800
C3—H30.9500C18—H18C0.9800
O3—Zn1—O596.76 (4)N2—C6—C5114.92 (10)
O3—Zn1—O1120.20 (4)C7—C6—C5124.11 (11)
O5—Zn1—O195.68 (4)C8—C7—C6118.89 (12)
O3—Zn1—N196.90 (4)C8—C7—H7120.6
O5—Zn1—N196.21 (4)C6—C7—H7120.6
O1—Zn1—N1139.18 (4)C7—C8—C9120.39 (12)
O3—Zn1—N289.55 (4)C7—C8—H8119.8
O5—Zn1—N2171.01 (4)C9—C8—H8119.8
O1—Zn1—N286.60 (4)C10—C9—C8116.57 (13)
N1—Zn1—N276.62 (4)C10—C9—C12120.25 (13)
O4i—Ca1—O4180.0C8—C9—C12123.17 (12)
O4i—Ca1—O6i86.56 (4)N2—C10—C9123.49 (12)
O4—Ca1—O6i93.44 (4)N2—C10—H10118.3
O4i—Ca1—O693.44 (4)C9—C10—H10118.3
O4—Ca1—O686.56 (4)C2—C11—H11A109.5
O6i—Ca1—O6180.0C2—C11—H11B109.5
O4i—Ca1—O193.28 (4)H11A—C11—H11B109.5
O4—Ca1—O186.72 (4)C2—C11—H11C109.5
O6i—Ca1—O197.73 (3)H11A—C11—H11C109.5
O6—Ca1—O182.27 (3)H11B—C11—H11C109.5
O4i—Ca1—O1i86.72 (4)C9—C12—H12A109.5
O4—Ca1—O1i93.28 (4)C9—C12—H12B109.5
O6i—Ca1—O1i82.27 (3)H12A—C12—H12B109.5
O6—Ca1—O1i97.73 (3)C9—C12—H12C109.5
O1—Ca1—O1i179.999 (17)H12A—C12—H12C109.5
C13—O1—Zn1105.63 (8)H12B—C12—H12C109.5
C13—O1—Ca1146.51 (8)O2—C13—O1122.19 (12)
Zn1—O1—Ca1104.79 (4)O2—C13—C14121.36 (13)
C15—O3—Zn1119.31 (8)O1—C13—C14116.44 (12)
C15—O4—Ca1136.47 (8)C13—C14—H14A109.5
C17—O5—Zn1120.05 (8)C13—C14—H14B109.5
C17—O6—Ca1140.65 (8)H14A—C14—H14B109.5
C1—N1—C5119.60 (11)C13—C14—H14C109.5
C1—N1—Zn1122.94 (9)H14A—C14—H14C109.5
C5—N1—Zn1117.12 (9)H14B—C14—H14C109.5
C10—N2—C6119.69 (11)O4—C15—O3124.57 (12)
C10—N2—Zn1125.10 (8)O4—C15—C16118.87 (12)
C6—N2—Zn1115.00 (9)O3—C15—C16116.56 (12)
N1—C1—C2123.20 (13)C15—C16—H16A109.5
N1—C1—H1118.4C15—C16—H16B109.5
C2—C1—H1118.4H16A—C16—H16B109.5
C3—C2—C1117.19 (13)C15—C16—H16C109.5
C3—C2—C11122.54 (13)H16A—C16—H16C109.5
C1—C2—C11120.27 (14)H16B—C16—H16C109.5
C4—C3—C2120.09 (12)O6—C17—O5125.19 (11)
C4—C3—H3120.0O6—C17—C18118.20 (11)
C2—C3—H3120.0O5—C17—C18116.61 (11)
C3—C4—C5119.08 (13)C17—C18—H18A109.5
C3—C4—H4120.5C17—C18—H18B109.5
C5—C4—H4120.5H18A—C18—H18B109.5
N1—C5—C4120.82 (13)C17—C18—H18C109.5
N1—C5—C6115.76 (10)H18A—C18—H18C109.5
C4—C5—C6123.42 (12)H18B—C18—H18C109.5
N2—C6—C7120.96 (12)
O3—Zn1—O1—C13167.59 (7)O1—Zn1—N2—C6148.38 (9)
O5—Zn1—O1—C1391.19 (8)N1—Zn1—N2—C65.87 (8)
N1—Zn1—O1—C1315.15 (11)C5—N1—C1—C20.71 (19)
N2—Zn1—O1—C1380.09 (8)Zn1—N1—C1—C2172.43 (10)
Ca1—Zn1—O1—C13165.81 (10)N1—C1—C2—C30.8 (2)
O3—Zn1—O1—Ca126.60 (5)N1—C1—C2—C11179.41 (13)
O5—Zn1—O1—Ca174.63 (4)C1—C2—C3—C41.7 (2)
N1—Zn1—O1—Ca1179.04 (5)C11—C2—C3—C4178.52 (14)
N2—Zn1—O1—Ca1114.10 (4)C2—C3—C4—C51.1 (2)
O4i—Ca1—O1—C1312.60 (15)C1—N1—C5—C41.28 (18)
O4—Ca1—O1—C13167.40 (15)Zn1—N1—C5—C4172.25 (9)
O6i—Ca1—O1—C1374.37 (15)C1—N1—C5—C6179.45 (11)
O6—Ca1—O1—C13105.63 (15)Zn1—N1—C5—C67.02 (13)
O4i—Ca1—O1—Zn1142.08 (4)C3—C4—C5—N10.37 (19)
O4—Ca1—O1—Zn137.92 (4)C3—C4—C5—C6179.58 (11)
O6i—Ca1—O1—Zn1130.95 (4)C10—N2—C6—C70.24 (17)
O6—Ca1—O1—Zn149.05 (4)Zn1—N2—C6—C7175.22 (9)
O5—Zn1—O3—C15103.30 (9)C10—N2—C6—C5179.08 (10)
O1—Zn1—O3—C152.69 (10)Zn1—N2—C6—C54.10 (13)
N1—Zn1—O3—C15159.58 (9)N1—C5—C6—N21.71 (15)
N2—Zn1—O3—C1583.12 (9)C4—C5—C6—N2177.54 (11)
O6i—Ca1—O4—C15165.69 (13)N1—C5—C6—C7178.99 (11)
O6—Ca1—O4—C1514.31 (13)C4—C5—C6—C71.76 (19)
O1—Ca1—O4—C1568.13 (13)N2—C6—C7—C81.36 (18)
O1i—Ca1—O4—C15111.87 (13)C5—C6—C7—C8177.90 (12)
O3—Zn1—O5—C1768.30 (10)C6—C7—C8—C91.38 (19)
O1—Zn1—O5—C1753.08 (10)C7—C8—C9—C100.33 (19)
N1—Zn1—O5—C17166.04 (10)C7—C8—C9—C12178.98 (12)
O4i—Ca1—O6—C1789.17 (14)C6—N2—C10—C90.90 (18)
O4—Ca1—O6—C1790.83 (14)Zn1—N2—C10—C9173.54 (9)
O1—Ca1—O6—C173.67 (14)C8—C9—C10—N20.85 (18)
O1i—Ca1—O6—C17176.33 (14)C12—C9—C10—N2177.85 (12)
O3—Zn1—N1—C192.32 (10)Zn1—O1—C13—O28.12 (14)
O5—Zn1—N1—C15.29 (10)Ca1—O1—C13—O2146.45 (12)
O1—Zn1—N1—C1111.43 (10)Zn1—O1—C13—C14170.85 (9)
N2—Zn1—N1—C1179.79 (11)Ca1—O1—C13—C1434.6 (2)
O3—Zn1—N1—C580.97 (9)Ca1—O4—C15—O347.00 (19)
O5—Zn1—N1—C5178.58 (9)Ca1—O4—C15—C16132.51 (12)
O1—Zn1—N1—C575.27 (11)Zn1—O3—C15—O40.07 (17)
N2—Zn1—N1—C56.91 (8)Zn1—O3—C15—C16179.59 (9)
O3—Zn1—N2—C1083.33 (10)Ca1—O6—C17—O535.1 (2)
O1—Zn1—N2—C1036.95 (10)Ca1—O6—C17—C18145.71 (11)
N1—Zn1—N2—C10179.46 (10)Zn1—O5—C17—O60.38 (18)
O3—Zn1—N2—C691.33 (9)Zn1—O5—C17—C18178.85 (8)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[CaZn2(C2H3O2)6(C12H12N2)2]
Mr893.56
Crystal system, space groupTriclinic, P1
Temperature (K)100
a, b, c (Å)8.3356 (10), 8.841 (1), 13.696 (2)
α, β, γ (°)74.103 (7), 83.263 (6), 83.560 (7)
V3)960.6 (2)
Z1
Radiation typeMo Kα
µ (mm1)1.45
Crystal size (mm)0.34 × 0.32 × 0.27
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.639, 0.699
No. of measured, independent and
observed [I > 2σ(I)] reflections
16096, 8962, 7497
Rint0.025
(sin θ/λ)max1)0.841
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.086, 1.05
No. of reflections8962
No. of parameters256
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.65, 0.78

Computer programs: COLLECT (Nonius, 2000), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012).

Acknowledgements top

The National Science Foundation is acknowledged for a CAREER award (CHE-1056927) to MAH. The NMR core facility at Jackson State University is supported by the National Institutes of Health (G12RR013459). Purchase of the diffractometer was made possible by grant No. LEQSF (1999–2000)-ENH-TR-13, administered by the Louisiana Board of Regents.

references
References top

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Herold, S. & Lippard, S. J. (1997). Inorg. Chem. 36, 50–58.

Hossain, M. A., Saeed, M. A., Grynova, G., Powell, D. R. & Leszczynski, J. (2010). CrystEngComm, 12, 4042–4044.

Mendy, J. S., Saeed, M. A., Fronczek, F. R., Powell, D. R. & Hossain, M. A. (2010). Inorg. Chem. 49, 7223–7225.

Nonius (2000). COLLECT. Nonius BV, Delft, The Netherlands.

Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.

Rao, C. N. R., Natarajan, S. & Vaidhyanathan, R. (2004). Angew. Chem. Int. Ed. 43, 1466–1496.

Saeed, M. A., Powell, D. R. & Hossain, M. A. (2010). Tetrahedron Lett. 51, 4904–4907.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Voegtli, W. C., Khidekel, N., Baldwin, J., Ley, B. A., Bollinger, J. M. & Rosenzweig, A. C. (2000). J. Am. Chem. Soc. 122, 3255–3261.