[Journal logo]

Volume 69 
Part 12 
Pages o1770-o1771  
December 2013  

Received 22 October 2013
Accepted 27 October 2013
Online 13 November 2013

Key indicators
Single-crystal X-ray study
T = 293 K
Mean [sigma](C-C) = 0.003 Å
R = 0.032
wR = 0.092
Data-to-parameter ratio = 17.5
Details
Open access

(3aR,8bR)-3a,8b-Dihy­droxy-2-methyl­sulfanyl-3-nitro-1-phenyl-1,8b-di­hydro­indeno[1,2-b]pyrrol-4(3aH)-one

aDepartment of Physics, The Madura College, Madurai 625 011, India,bDepartment of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, India, and cDepartment of Food Science and Technology, University of Ruhuna, Mapalana, Kamburupitiya 81100, Sri Lanka
Correspondence e-mail: plakshmannilantha@ymail.com

In the title compound, C18H14N2O5, the pyrrolidine ring adopts a shallow envelope conformation, with the C atom bearing the OH group (and remote from the N atom) displaced by 0.257 (2) Å from the other atoms. The cyclo­pentane ring has a twisted conformation about the C-C bond bearing one =O and one -OH grouping. The dihedral angle between the five-membered rings (all atoms) is 65.54 (9)° and the OH groups lie to the same side of the ring-junction. The mol­ecular structure features a weak intra­molecular O-H...O bond and a possible C-H...[pi] inter­action. In the crystal, the mol­ecules are linked into [010] chains by O-H...O hydrogen bonds. Weak C-H...O bonds connect the chains into (100) sheets.

Related literature

For background to pyrrolidine derivatives, see: Grigg (1995[Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475-2486.]); Kravchenko et al. (2005[Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377-1383.]). For ring conformation analysis, see: Cremer & Pople (1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]). For a related structure, see: Ghorbani (2012[Ghorbani, M. H. (2012). Acta Cryst. E68, o2605.]).

[Scheme 1]

Experimental

Crystal data
  • C18H14N2O5S

  • Mr = 370.37

  • Orthorhombic, P 21 21 21

  • a = 9.6625 (3) Å

  • b = 10.8994 (2) Å

  • c = 15.8154 (4) Å

  • V = 1665.61 (7) Å3

  • Z = 4

  • Mo K[alpha] radiation

  • [mu] = 0.23 mm-1

  • T = 293 K

  • 0.21 × 0.19 × 0.18 mm

Data collection
  • Bruker Kappa APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996[Sheldrick, G. M. (1996). SADABS, University of Go ttingen, Germany.]) Tmin = 0.967, Tmax = 0.974

  • 9249 measured reflections

  • 4140 independent reflections

  • 3800 reflections with I > 2[sigma](I)

  • Rint = 0.018

Refinement
  • R[F2 > 2[sigma](F2)] = 0.032

  • wR(F2) = 0.092

  • S = 1.00

  • 4140 reflections

  • 236 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.23 e Å-3

  • [Delta][rho]min = -0.19 e Å-3

  • Absolute structure: Flack (1983[Flack, H. D. (1983). Acta Cryst. A39, 876-881.])

  • Absolute structure parameter: 0.00 (6)

Table 1
Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C13-C18 benzene ring.

D-H...A D-H H...A D...A D-H...A
O3-H3...O5 0.82 2.34 2.895 (2) 126
O2-H2...O5i 0.82 2.00 2.8155 (18) 171
C11-H11...O4ii 0.93 2.51 3.423 (3) 166
C9-H9...Cg1 0.93 2.89 3.545 (2) 129
Symmetry codes: (i) [x+{\script{1\over 2}}, -y-{\script{1\over 2}}, -z]; (ii) [-x-{\script{1\over 2}}, -y, z+{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); cell refinement: SAINT (Bruker, 2004[Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]); software used to prepare material for publication: SHELXL97.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB7154 ).


Acknowledgements

JS and RAN thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi for funds under the fast-track scheme (No. SR/FT/CS-073/2009)

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.
Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.  [CrossRef] [ChemPort] [Web of Science]
Flack, H. D. (1983). Acta Cryst. A39, 876-881.  [CrossRef] [IUCr Journals]
Ghorbani, M. H. (2012). Acta Cryst. E68, o2605.  [CSD] [CrossRef] [IUCr Journals]
Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475-2486.  [CrossRef] [ChemPort] [Web of Science]
Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377-1383.  [Web of Science] [CrossRef] [PubMed] [ChemPort]
Sheldrick, G. M. (1996). SADABS, University of Go ttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Spek, A. L. (2009). Acta Cryst. D65, 148-155.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, o1770-o1771   [ doi:10.1107/S1600536813029577 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.