supplementary materials


hb7154 scheme

Acta Cryst. (2013). E69, o1770-o1771    [ doi:10.1107/S1600536813029577 ]

(3aR,8bR)-3a,8b-Dihy­droxy-2-methyl­sulfanyl-3-nitro-1-phenyl-1,8b-di­hydro­indeno[1,2-b]pyrrol-4(3aH)-one

R. A. Nagalakshmi, J. Suresh, V. Jeyachandran, R. R. Kumar and P. L. N. Lakshman

Abstract top

In the title compound, C18H14N2O5, the pyrrolidine ring adopts a shallow envelope conformation, with the C atom bearing the OH group (and remote from the N atom) displaced by 0.257 (2) Å from the other atoms. The cyclo­pentane ring has a twisted conformation about the C-C bond bearing one =O and one -OH grouping. The dihedral angle between the five-membered rings (all atoms) is 65.54 (9)° and the OH groups lie to the same side of the ring-junction. The mol­ecular structure features a weak intra­molecular O-H...O bond and a possible C-H...[pi] inter­action. In the crystal, the mol­ecules are linked into [010] chains by O-H...O hydrogen bonds. Weak C-H...O bonds connect the chains into (100) sheets.

Comment top

Pyrrolidine-containing compounds are of significant importance because of their biological activities and widespread employment in catalysis (Grigg, 1995; Kravchenko et al., 2005). As part of our own studies in this area, we have undertaken the crystal structure determination of the title compound, a pyrrolidine derivative,and the results are presented here.

In the title compound (Fig 1) C18H14N2O5, the central pyrrolidine ring is enveloped on C2 with the puckering parameters q2 = 0.1576 (16) Å and φ2 = 243.9 (6) ° (Cremer & Pople, 1975). The cyclopentane ring has a twisted conformation with the puckering parameters q2 = 0.1540 (18) Å and φ2 = 45.5 (7) °. The benzene ring of the indane ring is in planar with r.m.s. deviation 0.007 (1) Å. The benzene ring attached to the pyrrole ring is also planar with r.m.s. deviation 0.0096 Å. The aryl ring makes the dihedral angle of 57.40 (1) ° with the mean plane of the pyrrolidine ring. The sum of the C—N—C angles around N1 (359.89 (1)°) atom is implying a noticeable flattening of the trigonal pyramidal geometry about N1. The conformation of the methylsulfanyl moiety is in anticlinical conformation as evidenced from the torsion angle C5-S1-C4-C3 = -145.2 ° . The nitro group is well ordered and makes a dihedral angle of 20.25 (17) ° with the mean plane of pyrrolidine ring. The twist of the methyl sulfanyl ring attached with the pyrrolidine ring is indicated by the torsion angle C5-S1-C4-N1 = 28.5 °. The bond length C4-S1 = 1.727 (2) Å is shorter than S1-C5 = 1.804 (3) Å as found in similar structure (Ghorbani, 2012). The methyl group of the methyl sulfanyl substituent is tilted towards the plane of the benzene ring as indicated by the angle C4-S1-C5 = 106.52 (11) °. Due to conjugation ,the bond length C1-O2 = 1.380 (4)Å is shorter than the bond length C2-O3 = 1.409 (2) Å. The methoxy groups substituted at the phenyl rings are twisted, as it can be seen from the torsion angles C19-O6-C16-C17 = 14.1 (3) °.

The structure features a weak intra-molecular O—H···O interaction. An inter- molecular O2—H2···O5 inteaction forms a zig-zag chain along b axis and they are further connected by C11—H11···O4 inter-molecular interaction, forming a zig-zag chain along c axis. A weak C—H···Cg1 interaction is also observed, as in Table 1 (Cg1 is the centroid of the benzene ring C13-C18).

Related literature top

For background to pyrrolidine derivatives, see: Grigg (1995); Kravchenko et al. (2005). For ring conformation analysis, see: Cremer & Pople (1975). For a related structure, see: Ghorbani (2012).

Experimental top

A mixture of (E)-N-(1-(methylthio)-2-nitrovinyl)aniline (1 mmol) with ninhydrin (1 mmol) in presence of glacial AcOH (3-5 drops) was thoroughly ground in a pestle and mortar at room temperature for 2-10 mins. Thereaction progress was monitored by thin layer chromatography. After completion of the reaction, the reaction mixture was triturated with crushed ice, the resulting solid filtered off and washed with water to afford the pure product. The compound was further recrystallized from ethanol to obtain colourless blocks. Melting point : 451K - 453K. Yield : 94%.

Refinement top

H atoms were placed at calculated positions and allowed to ride on their carrier atoms with C—H = 0.93–0.98Å. Uiso = 1.2Ueq(C) for CH2 and CH groups and Uiso = 1.5Ueq(C) for CH3 group.

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing 20% probability displacement ellipsoids. H-atoms are omitted for clarity.
[Figure 2] Fig. 2. The partial packing diagram showing 0—H···O and C—H···O interactions.
(3aR,8bR)-3a,8b-Dihydroxy-2-methylsulfanyl-3-nitro-1-phenyl-1,8b-dihydroindeno [1,2-b]pyrrol-4(3aH)-one top
Crystal data top
C18H14N2O5SF(000) = 768
Mr = 370.37Dx = 1.477 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 2000 reflections
a = 9.6625 (3) Åθ = 2–31°
b = 10.8994 (2) ŵ = 0.23 mm1
c = 15.8154 (4) ÅT = 293 K
V = 1665.61 (7) Å3Block, colourless
Z = 40.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
4140 independent reflections
Radiation source: fine-focus sealed tube3800 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
Detector resolution: 0 pixels mm-1θmax = 28.3°, θmin = 2.3°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1214
Tmin = 0.967, Tmax = 0.974l = 1821
9249 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0557P)2 + 0.2428P]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
4140 reflectionsΔρmax = 0.23 e Å3
236 parametersΔρmin = 0.19 e Å3
0 restraintsAbsolute structure: Flack (1983), 000 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (6)
Crystal data top
C18H14N2O5SV = 1665.61 (7) Å3
Mr = 370.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.6625 (3) ŵ = 0.23 mm1
b = 10.8994 (2) ÅT = 293 K
c = 15.8154 (4) Å0.21 × 0.19 × 0.18 mm
Data collection top
Bruker Kappa APEXII
diffractometer
4140 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3800 reflections with I > 2σ(I)
Tmin = 0.967, Tmax = 0.974Rint = 0.018
9249 measured reflectionsθmax = 28.3°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.092Δρmax = 0.23 e Å3
S = 1.00Δρmin = 0.19 e Å3
4140 reflectionsAbsolute structure: Flack (1983), 000 Friedel pairs
236 parametersAbsolute structure parameter: 0.00 (6)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ (F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F.2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.14622 (15)0.06791 (13)0.10358 (9)0.0281 (3)
C20.07556 (17)0.17588 (14)0.05420 (10)0.0322 (3)
C30.07626 (16)0.12630 (14)0.03423 (9)0.0315 (3)
C40.16436 (15)0.02676 (14)0.04222 (9)0.0287 (3)
C50.3928 (2)0.0803 (2)0.11431 (14)0.0551 (5)
H5A0.43420.11550.16390.083*
H5B0.44610.01060.09640.083*
H5C0.39100.14030.06990.083*
C60.07130 (19)0.18225 (19)0.09064 (12)0.0447 (4)
C70.09638 (18)0.06680 (17)0.13669 (12)0.0426 (4)
C80.02672 (16)0.00269 (14)0.14699 (9)0.0326 (3)
C90.0300 (2)0.10338 (17)0.19568 (11)0.0438 (4)
H90.11210.14610.20440.053*
C100.0939 (3)0.1434 (2)0.23091 (13)0.0583 (6)
H100.09410.21460.26330.070*
C110.2169 (3)0.0807 (2)0.21922 (15)0.0663 (6)
H110.29820.11100.24280.080*
C120.2199 (2)0.0259 (2)0.17303 (15)0.0612 (5)
H120.30180.06970.16610.073*
C130.25948 (16)0.12942 (13)0.05639 (10)0.0318 (3)
C140.3684 (2)0.14182 (18)0.11299 (11)0.0446 (4)
H140.41430.07290.13350.054*
C150.4078 (2)0.2584 (2)0.13854 (14)0.0559 (5)
H150.47810.26740.17820.067*
C160.3443 (3)0.36057 (19)0.10607 (15)0.0605 (6)
H160.37290.43830.12290.073*
C170.2376 (2)0.34801 (17)0.04819 (16)0.0566 (5)
H170.19540.41730.02550.068*
C180.1936 (2)0.23165 (15)0.02401 (12)0.0430 (4)
H180.12030.22270.01360.052*
N10.21036 (13)0.00884 (11)0.03503 (7)0.0280 (2)
N20.02304 (15)0.19222 (14)0.10135 (10)0.0405 (3)
O10.14751 (19)0.26911 (18)0.08517 (13)0.0783 (6)
O20.24185 (12)0.10349 (10)0.16359 (7)0.0339 (2)
H20.30650.13860.14040.051*
O30.14813 (16)0.28697 (11)0.06474 (9)0.0464 (3)
H30.11560.33920.03310.070*
O40.01453 (17)0.14460 (16)0.17197 (9)0.0568 (4)
O50.01833 (16)0.30050 (13)0.08714 (10)0.0559 (4)
S10.21819 (5)0.03237 (4)0.13829 (2)0.04134 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0308 (7)0.0277 (6)0.0257 (6)0.0027 (5)0.0015 (5)0.0009 (5)
C20.0339 (7)0.0293 (7)0.0336 (7)0.0048 (6)0.0008 (6)0.0018 (6)
C30.0317 (7)0.0334 (7)0.0295 (7)0.0016 (6)0.0019 (6)0.0056 (6)
C40.0297 (6)0.0302 (7)0.0262 (6)0.0051 (6)0.0003 (5)0.0009 (5)
C50.0551 (11)0.0604 (12)0.0497 (10)0.0134 (10)0.0204 (9)0.0003 (9)
C60.0372 (8)0.0548 (11)0.0421 (9)0.0125 (8)0.0044 (7)0.0029 (8)
C70.0355 (8)0.0529 (10)0.0395 (8)0.0020 (7)0.0064 (7)0.0023 (8)
C80.0355 (7)0.0361 (7)0.0262 (6)0.0027 (6)0.0047 (6)0.0031 (6)
C90.0557 (11)0.0398 (8)0.0359 (8)0.0028 (8)0.0116 (8)0.0025 (7)
C100.0778 (16)0.0532 (11)0.0441 (10)0.0179 (11)0.0222 (10)0.0019 (9)
C110.0537 (13)0.0828 (15)0.0625 (13)0.0234 (12)0.0275 (11)0.0038 (12)
C120.0374 (9)0.0844 (15)0.0616 (12)0.0002 (11)0.0152 (9)0.0022 (11)
C130.0357 (8)0.0300 (7)0.0297 (7)0.0073 (6)0.0046 (6)0.0022 (5)
C140.0445 (9)0.0487 (10)0.0408 (9)0.0166 (8)0.0042 (7)0.0046 (7)
C150.0618 (12)0.0596 (11)0.0462 (10)0.0313 (10)0.0019 (10)0.0048 (10)
C160.0737 (14)0.0452 (11)0.0626 (12)0.0282 (10)0.0175 (11)0.0168 (9)
C170.0615 (13)0.0334 (8)0.0749 (14)0.0024 (9)0.0114 (11)0.0033 (9)
C180.0438 (10)0.0353 (8)0.0498 (10)0.0015 (7)0.0015 (8)0.0031 (7)
N10.0304 (6)0.0273 (5)0.0262 (5)0.0031 (5)0.0021 (5)0.0003 (4)
N20.0346 (7)0.0460 (8)0.0409 (8)0.0039 (6)0.0072 (6)0.0161 (6)
O10.0633 (10)0.0836 (12)0.0880 (12)0.0434 (10)0.0184 (9)0.0231 (10)
O20.0361 (6)0.0368 (5)0.0288 (5)0.0014 (5)0.0028 (4)0.0014 (4)
O30.0615 (8)0.0269 (5)0.0507 (7)0.0006 (5)0.0068 (6)0.0009 (5)
O40.0583 (9)0.0755 (10)0.0365 (7)0.0049 (8)0.0143 (6)0.0108 (6)
O50.0563 (8)0.0461 (7)0.0652 (9)0.0123 (6)0.0069 (7)0.0198 (7)
S10.0506 (2)0.0458 (2)0.02760 (17)0.00591 (19)0.00479 (17)0.00507 (16)
Geometric parameters (Å, º) top
C1—O21.3802 (18)C10—C111.383 (4)
C1—N11.5030 (18)C10—H100.9300
C1—C81.520 (2)C11—C121.373 (4)
C1—C21.569 (2)C11—H110.9300
C2—O31.409 (2)C12—H120.9300
C2—C31.499 (2)C13—C181.382 (2)
C2—C61.533 (2)C13—C141.388 (2)
C3—N21.3811 (19)C13—N11.4377 (18)
C3—C41.385 (2)C14—C151.387 (3)
C4—N11.3567 (18)C14—H140.9300
C4—S11.7304 (15)C15—C161.371 (3)
C5—S11.807 (2)C15—H150.9300
C5—H5A0.9600C16—C171.386 (4)
C5—H5B0.9600C16—H160.9300
C5—H5C0.9600C17—C181.391 (3)
C6—O11.202 (2)C17—H170.9300
C6—C71.474 (3)C18—H180.9300
C7—C81.389 (2)N2—O41.234 (2)
C7—C121.398 (3)N2—O51.266 (2)
C8—C91.389 (2)O2—H20.8200
C9—C101.391 (3)O3—H30.8200
C9—H90.9300
O2—C1—N1112.11 (12)C11—C10—C9122.07 (19)
O2—C1—C8109.23 (12)C11—C10—H10119.0
N1—C1—C8112.26 (11)C9—C10—H10119.0
O2—C1—C2115.02 (12)C12—C11—C10120.5 (2)
N1—C1—C2103.76 (11)C12—C11—H11119.7
C8—C1—C2104.18 (12)C10—C11—H11119.7
O3—C2—C3114.69 (13)C11—C12—C7118.1 (2)
O3—C2—C6112.16 (14)C11—C12—H12121.0
C3—C2—C6111.79 (14)C7—C12—H12121.0
O3—C2—C1111.66 (13)C18—C13—C14120.66 (15)
C3—C2—C1101.07 (12)C18—C13—N1119.86 (15)
C6—C2—C1104.46 (13)C14—C13—N1119.39 (15)
N2—C3—C4124.50 (14)C15—C14—C13119.01 (19)
N2—C3—C2121.85 (14)C15—C14—H14120.5
C4—C3—C2111.73 (13)C13—C14—H14120.5
N1—C4—C3110.08 (13)C16—C15—C14120.83 (19)
N1—C4—S1125.85 (11)C16—C15—H15119.6
C3—C4—S1123.82 (11)C14—C15—H15119.6
S1—C5—H5A109.5C15—C16—C17120.00 (17)
S1—C5—H5B109.5C15—C16—H16120.0
H5A—C5—H5B109.5C17—C16—H16120.0
S1—C5—H5C109.5C16—C17—C18120.0 (2)
H5A—C5—H5C109.5C16—C17—H17120.0
H5B—C5—H5C109.5C18—C17—H17120.0
O1—C6—C7127.37 (19)C13—C18—C17119.48 (18)
O1—C6—C2125.13 (19)C13—C18—H18120.3
C7—C6—C2107.41 (14)C17—C18—H18120.3
C8—C7—C12121.52 (18)C4—N1—C13125.54 (12)
C8—C7—C6110.28 (15)C4—N1—C1110.81 (11)
C12—C7—C6128.00 (18)C13—N1—C1118.38 (11)
C7—C8—C9120.20 (16)O4—N2—O5122.11 (15)
C7—C8—C1111.24 (14)O4—N2—C3120.10 (15)
C9—C8—C1128.48 (15)O5—N2—C3117.78 (16)
C8—C9—C10117.6 (2)C1—O2—H2109.5
C8—C9—H9121.2C2—O3—H3109.5
C10—C9—H9121.2C4—S1—C5101.78 (8)
O2—C1—C2—O315.37 (18)N1—C1—C8—C964.8 (2)
N1—C1—C2—O3107.44 (14)C2—C1—C8—C9176.43 (15)
C8—C1—C2—O3134.90 (13)C7—C8—C9—C101.7 (3)
O2—C1—C2—C3137.77 (13)C1—C8—C9—C10178.21 (16)
N1—C1—C2—C314.95 (14)C8—C9—C10—C110.5 (3)
C8—C1—C2—C3102.70 (13)C9—C10—C11—C121.2 (4)
O2—C1—C2—C6106.06 (15)C10—C11—C12—C71.7 (4)
N1—C1—C2—C6131.12 (13)C8—C7—C12—C110.4 (3)
C8—C1—C2—C613.47 (16)C6—C7—C12—C11174.7 (2)
O3—C2—C3—N259.5 (2)C18—C13—C14—C151.8 (3)
C6—C2—C3—N269.58 (19)N1—C13—C14—C15174.80 (16)
C1—C2—C3—N2179.80 (14)C13—C14—C15—C162.6 (3)
O3—C2—C3—C4105.35 (15)C14—C15—C16—C171.3 (3)
C6—C2—C3—C4125.53 (15)C15—C16—C17—C180.9 (3)
C1—C2—C3—C414.91 (16)C14—C13—C18—C170.3 (3)
N2—C3—C4—N1173.08 (14)N1—C13—C18—C17176.95 (17)
C2—C3—C4—N18.67 (18)C16—C17—C18—C131.7 (3)
N2—C3—C4—S11.5 (2)C3—C4—N1—C13156.00 (14)
C2—C3—C4—S1165.92 (11)S1—C4—N1—C1329.5 (2)
O3—C2—C6—O140.0 (3)C3—C4—N1—C12.30 (16)
C3—C2—C6—O190.4 (2)S1—C4—N1—C1176.76 (11)
C1—C2—C6—O1161.1 (2)C18—C13—N1—C439.6 (2)
O3—C2—C6—C7136.79 (15)C14—C13—N1—C4143.72 (16)
C3—C2—C6—C792.78 (16)C18—C13—N1—C1112.28 (17)
C1—C2—C6—C715.68 (18)C14—C13—N1—C164.36 (19)
O1—C6—C7—C8164.5 (2)O2—C1—N1—C4136.14 (13)
C2—C6—C7—C812.2 (2)C8—C1—N1—C4100.46 (14)
O1—C6—C7—C1210.3 (4)C2—C1—N1—C411.43 (15)
C2—C6—C7—C12173.0 (2)O2—C1—N1—C1368.05 (16)
C12—C7—C8—C91.3 (3)C8—C1—N1—C1355.35 (17)
C6—C7—C8—C9173.89 (16)C2—C1—N1—C13167.24 (13)
C12—C7—C8—C1178.35 (18)C4—C3—N2—O423.3 (2)
C6—C7—C8—C13.1 (2)C2—C3—N2—O4173.83 (16)
O2—C1—C8—C7116.54 (15)C4—C3—N2—O5158.10 (16)
N1—C1—C8—C7118.47 (14)C2—C3—N2—O54.8 (2)
C2—C1—C8—C76.84 (17)N1—C4—S1—C528.50 (16)
O2—C1—C8—C960.2 (2)C3—C4—S1—C5145.23 (14)
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.822.342.895 (2)126
O2—H2···O5i0.822.002.8155 (18)171
C11—H11···O4ii0.932.513.423 (3)166
C9—H9···Cg10.932.893.545 (2)129
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
Cg1 is the centroid of the C13–C18 benzene ring.
D—H···AD—HH···AD···AD—H···A
O3—H3···O50.822.342.895 (2)126
O2—H2···O5i0.822.002.8155 (18)171
C11—H11···O4ii0.932.513.423 (3)166
C9—H9···Cg10.932.893.545 (2)129
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x1/2, y, z+1/2.
Acknowledgements top

JS and RAN thank the management of the Madura College for their encouragement and support. RRK thanks the DST, New Delhi for funds under the fast-track scheme (No. SR/FT/CS-073/2009)

references
References top

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin,USA.

Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.

Flack, H. D. (1983). Acta Cryst. A39, 876–881.

Ghorbani, M. H. (2012). Acta Cryst. E68, o2605.

Grigg, R. (1995). Tetrahedron Asymmetry, 6, 2475–2486.

Kravchenko, D. V., Kysil, V. M., Tkachenko, S. E., Maliarchouk, S., Okun, I. M. & Ivachtchenko, A. V. (2005). Eur. J. Med. Chem. pp. 1377–1383.

Sheldrick, G. M. (1996). SADABS, University of Go¨ ttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.