supplementary materials


hb7162 scheme

Acta Cryst. (2013). E69, o1848    [ doi:10.1107/S1600536813031929 ]

2-[(E)-2-(4-Meth­oxy­phen­yl)ethen­yl]-1-methyl­pyridinium iodide

K. Senthil, S. Kalainathan, A. RubanKumar, V. Ramkumar and J. Podder

Abstract top

In the title mol­ecular salt, C16H10NO+·I-, the dihedral angle between the pyridinium and benzene rings is 6.61 (8)°. In the crystal, the cation is linked to the anion by a C-H...I inter­action arising from the activated aromatic C atom adjacent to the N+ cation.

Comment top

In recent years, the design of new organic nonlinear optical (NLO) materials have been studied (e.g. Jagannathan et al., 2007). As part of our stuies in this area, the title pyridinium derivative compound was synthesized,. It crystallizes in the centrosymmetric Pī triclinic space group, so it does not exhibit second-order nonlinear optical properties (Williams, 1984).

The cation is essentially planar and exist in E configuration. The dihedral angle between the pyridinium and benzene rings is 6.16 (8)°. Bond lengths and angles are comparable with those for closely related structure (Chantrapromma et al., 2010). In the crystal, the cation is linked to the anion by a C—H···I interaction (Table 1).

Related literature top

For background to organic non-linear optical materials, see: Jagannathan et al. (2007); Williams (1984). For a related structure, see: Chantrapromma et al. (2010).

Experimental top

The title compound was prepared by mixing 1:1 molar ratio of solutions of 1,2-dimethylpyridinium iodide (7.052 g, 30 mmol), 4-methoxy benzaldehyde (3.7 ml, 30 mmol) and piperidine (5 drops) in hot methanol (20 ml). The resulting mixture was refluxed at 60°C for 8 h to give yellowish crystalline product, which was filtered off and washed with diethyl ether and dried. Yellow needle-shaped single crystals of the title compound suitable for X-ray structure determination were obtained by recrystallization (three times) from methanol–acetonitrile (1:1) mixture by slow evaporation of the solvent at ambient temperature over several days (m.p. 514–516 K).

Refinement top

All hydrogen atoms were fixed geometrically (C—H 0.93–0.98 Å) and refined as riding, with Uiso(H) = 1.2–1.5 Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. ORTEP of the molecule with atoms represented as 30% probability ellipsoids.
2-[(E)-2-(4-Methoxyphenyl)ethenyl]-1-methylpyridinium iodide top
Crystal data top
C15H16NO+·IZ = 2
Mr = 353.19F(000) = 348
Triclinic, P1Dx = 1.597 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.1760 (3) ÅCell parameters from 8234 reflections
b = 8.6895 (4) Åθ = 2.4–28.4°
c = 12.1555 (6) ŵ = 2.17 mm1
α = 92.645 (2)°T = 298 K
β = 92.115 (2)°Slab, yellow
γ = 103.781 (2)°0.25 × 0.20 × 0.15 mm
V = 734.47 (6) Å3
Data collection top
Bruker APEXII CCD
diffractometer
2470 independent reflections
Radiation source: fine-focus sealed tube2363 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.024
phi and ω scansθmax = 25.0°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 86
Tmin = 0.613, Tmax = 0.737k = 1010
8523 measured reflectionsl = 1214
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0211P)2 + 0.414P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2470 reflectionsΔρmax = 0.31 e Å3
165 parametersΔρmin = 0.59 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0288 (14)
Crystal data top
C15H16NO+·Iγ = 103.781 (2)°
Mr = 353.19V = 734.47 (6) Å3
Triclinic, P1Z = 2
a = 7.1760 (3) ÅMo Kα radiation
b = 8.6895 (4) ŵ = 2.17 mm1
c = 12.1555 (6) ÅT = 298 K
α = 92.645 (2)°0.25 × 0.20 × 0.15 mm
β = 92.115 (2)°
Data collection top
Bruker APEXII CCD
diffractometer
2470 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
2363 reflections with I > 2σ(I)
Tmin = 0.613, Tmax = 0.737Rint = 0.024
8523 measured reflectionsθmax = 25.0°
Refinement top
R[F2 > 2σ(F2)] = 0.020H-atom parameters constrained
wR(F2) = 0.052Δρmax = 0.31 e Å3
S = 1.09Δρmin = 0.59 e Å3
2470 reflectionsAbsolute structure: ?
165 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1445 (4)0.0480 (3)0.8878 (2)0.0494 (6)
H10.25820.02960.87420.059*
C20.1376 (4)0.1673 (3)0.9651 (2)0.0560 (7)
H20.24510.17221.00430.067*
C30.0321 (5)0.2809 (3)0.9843 (2)0.0598 (7)
H30.03970.36331.03720.072*
C40.1896 (4)0.2736 (3)0.9260 (2)0.0537 (6)
H40.30390.35030.94000.064*
C50.1799 (4)0.1513 (3)0.84555 (19)0.0419 (5)
C60.3386 (4)0.1382 (3)0.7790 (2)0.0468 (6)
H60.32970.04320.73830.056*
C70.4961 (4)0.2531 (3)0.7722 (2)0.0460 (5)
H70.50550.34490.81670.055*
C80.6550 (3)0.2503 (3)0.7027 (2)0.0422 (5)
C90.8189 (4)0.3743 (3)0.7121 (2)0.0497 (6)
H90.82330.45830.76320.060*
C100.9754 (4)0.3779 (3)0.6488 (2)0.0497 (6)
H101.08380.46180.65800.060*
C110.9687 (4)0.2554 (3)0.5718 (2)0.0497 (6)
C130.8062 (4)0.1296 (3)0.5607 (3)0.0622 (7)
H130.80190.04650.50880.075*
C140.6536 (4)0.1264 (3)0.6246 (2)0.0549 (6)
H140.54700.04080.61630.066*
C151.2825 (4)0.3695 (4)0.5113 (3)0.0652 (8)
H15A1.25010.46700.49430.098*
H15B1.37080.34590.45940.098*
H15C1.34100.38000.58450.098*
C160.0104 (4)0.0956 (3)0.7487 (2)0.0561 (7)
H16A0.13830.16170.74910.084*
H16B0.08050.15630.76760.084*
H16C0.01280.05670.67660.084*
N10.0107 (3)0.0400 (2)0.83019 (16)0.0409 (4)
O11.1126 (3)0.2441 (3)0.50511 (19)0.0726 (6)
I10.43035 (2)0.689767 (18)0.803640 (16)0.05847 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0449 (13)0.0580 (14)0.0471 (14)0.0149 (11)0.0023 (11)0.0090 (11)
C20.0638 (17)0.0679 (16)0.0428 (14)0.0267 (14)0.0105 (12)0.0086 (12)
C30.085 (2)0.0533 (15)0.0434 (14)0.0208 (14)0.0134 (14)0.0002 (11)
C40.0653 (16)0.0454 (13)0.0461 (14)0.0048 (12)0.0071 (12)0.0004 (11)
C50.0502 (13)0.0407 (11)0.0355 (12)0.0111 (10)0.0015 (10)0.0082 (9)
C60.0512 (14)0.0437 (12)0.0445 (13)0.0096 (11)0.0032 (11)0.0003 (10)
C70.0524 (14)0.0402 (12)0.0460 (14)0.0123 (10)0.0012 (11)0.0025 (10)
C80.0435 (12)0.0410 (11)0.0425 (13)0.0114 (10)0.0032 (10)0.0045 (9)
C90.0563 (15)0.0415 (12)0.0475 (14)0.0053 (11)0.0016 (12)0.0025 (10)
C100.0460 (13)0.0471 (13)0.0510 (15)0.0022 (10)0.0012 (11)0.0014 (11)
C110.0401 (13)0.0570 (14)0.0507 (15)0.0100 (11)0.0010 (11)0.0012 (11)
C130.0506 (15)0.0616 (16)0.0677 (19)0.0053 (13)0.0024 (13)0.0226 (14)
C140.0422 (13)0.0537 (14)0.0620 (17)0.0012 (11)0.0002 (12)0.0104 (12)
C150.0443 (15)0.0802 (19)0.0671 (19)0.0053 (14)0.0059 (13)0.0111 (15)
C160.0487 (14)0.0548 (14)0.0596 (17)0.0057 (12)0.0012 (12)0.0122 (12)
N10.0442 (11)0.0444 (10)0.0349 (10)0.0125 (8)0.0016 (8)0.0045 (8)
O10.0491 (11)0.0816 (14)0.0795 (15)0.0041 (10)0.0153 (10)0.0219 (11)
I10.04875 (13)0.04564 (12)0.07815 (17)0.00721 (8)0.00877 (9)0.00920 (8)
Geometric parameters (Å, º) top
C1—N11.351 (3)C9—C101.380 (4)
C1—C21.357 (4)C9—H90.9300
C1—H10.9300C10—C111.375 (4)
C2—C31.377 (4)C10—H100.9300
C2—H20.9300C11—O11.355 (3)
C3—C41.369 (4)C11—C131.393 (4)
C3—H30.9300C13—C141.362 (4)
C4—C51.397 (4)C13—H130.9300
C4—H40.9300C14—H140.9300
C5—N11.361 (3)C15—O11.426 (3)
C5—C61.445 (3)C15—H15A0.9600
C6—C71.326 (4)C15—H15B0.9600
C6—H60.9300C15—H15C0.9600
C7—C81.448 (4)C16—N11.479 (3)
C7—H70.9300C16—H16A0.9600
C8—C91.390 (3)C16—H16B0.9600
C8—C141.400 (4)C16—H16C0.9600
N1—C1—C2121.2 (2)C11—C10—H10120.5
N1—C1—H1119.4C9—C10—H10120.5
C2—C1—H1119.4O1—C11—C10124.9 (2)
C1—C2—C3118.6 (3)O1—C11—C13115.6 (2)
C1—C2—H2120.7C10—C11—C13119.5 (2)
C3—C2—H2120.7C14—C13—C11121.0 (3)
C4—C3—C2120.5 (3)C14—C13—H13119.5
C4—C3—H3119.8C11—C13—H13119.5
C2—C3—H3119.8C13—C14—C8120.9 (2)
C3—C4—C5120.4 (3)C13—C14—H14119.6
C3—C4—H4119.8C8—C14—H14119.6
C5—C4—H4119.8O1—C15—H15A109.5
N1—C5—C4117.4 (2)O1—C15—H15B109.5
N1—C5—C6119.1 (2)H15A—C15—H15B109.5
C4—C5—C6123.5 (2)O1—C15—H15C109.5
C7—C6—C5124.1 (2)H15A—C15—H15C109.5
C7—C6—H6117.9H15B—C15—H15C109.5
C5—C6—H6117.9N1—C16—H16A109.5
C6—C7—C8126.7 (2)N1—C16—H16B109.5
C6—C7—H7116.6H16A—C16—H16B109.5
C8—C7—H7116.6N1—C16—H16C109.5
C9—C8—C14117.0 (2)H16A—C16—H16C109.5
C9—C8—C7120.0 (2)H16B—C16—H16C109.5
C14—C8—C7123.0 (2)C1—N1—C5121.9 (2)
C10—C9—C8122.7 (2)C1—N1—C16117.2 (2)
C10—C9—H9118.7C5—N1—C16120.9 (2)
C8—C9—H9118.7C11—O1—C15118.6 (2)
C11—C10—C9119.0 (2)
N1—C1—C2—C30.2 (4)C9—C10—C11—C131.1 (4)
C1—C2—C3—C40.3 (4)O1—C11—C13—C14178.9 (3)
C2—C3—C4—C50.6 (4)C10—C11—C13—C140.2 (5)
C3—C4—C5—N11.5 (4)C11—C13—C14—C80.6 (5)
C3—C4—C5—C6178.4 (2)C9—C8—C14—C130.6 (4)
N1—C5—C6—C7167.1 (2)C7—C8—C14—C13179.6 (3)
C4—C5—C6—C712.8 (4)C2—C1—N1—C50.9 (4)
C5—C6—C7—C8176.5 (2)C2—C1—N1—C16179.3 (2)
C6—C7—C8—C9174.0 (3)C4—C5—N1—C11.7 (3)
C6—C7—C8—C145.8 (4)C6—C5—N1—C1178.2 (2)
C14—C8—C9—C100.2 (4)C4—C5—N1—C16178.4 (2)
C7—C8—C9—C10179.5 (2)C6—C5—N1—C161.6 (3)
C8—C9—C10—C111.1 (4)C10—C11—O1—C152.1 (4)
C9—C10—C11—O1179.6 (3)C13—C11—O1—C15179.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.932.963.872 (3)168
Symmetry code: (i) x1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1···I1i0.932.963.872 (3)168
Symmetry code: (i) x1, y1, z.
Acknowledgements top

The authors thank the DRDO, Government of India, for financial support. They also thank the VIT University management, Vellore, for their constant support and encouragement and acknowledge the Department of Chemistry, IIT Madras, for the data collection.

references
References top

Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chantrapromma, S., Chanawanno, K. & Fun, H.-K. (2010). Acta Cryst. E66, o1975–o1976.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Jagannathan, K., Kalainathan, S., Gnanasekaran, T., Vijayan, N. & Bhagavannarayana, G. (2007). Cryst. Res. Technol. 42, 483–487.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Williams, D. J. (1984). Angew. Chem. Int. Ed. Engl. 23, 690–703.