supplementary materials


hg5350 scheme

Acta Cryst. (2013). E69, o1792-o1793    [ doi:10.1107/S1600536813029966 ]

3-[1-(4-Bromo­phen­yl)eth­oxy]-2,2,5-trimethyl-4-phenyl-3-aza­hexa­ne

P. Pitliya, R. J. Butcher, A. Karim, P. F. Hudrlik, A. M. Hudrlik and D. Raghavan

Abstract top

The title compound, C22H30BrNO, is an alk­oxy­amine compound, an effective initiator in nitroxide-mediated free radical polymerization. It was prepared as a mixture of two diasteromers; the crystal for the X-ray analysis showed one of these as a pair of R,S and S,R enanti­omers. The tert-butyl and isopropyl groups are in an almost anti conformation in the crystal [C-N-C-C torsion angle = -168.8 (1)°], and the methyl group of the ethoxy group is in an approximate anti relationship to the tert-butyl group. The dihedral angle between the phenyl and benzene rings is 33.12 (7)°. The Br atom is disordered over two positions, with occupancies of 0.9139 (16) and 0.0861 (16). In the crystal, weak C-H...Br contacts link the mol­ecules into chains along [-110].

Comment top

Nitroxide-mediated radical polymerization (NMRP) has been widely used under mild conditions to synthesize polymers and block copolymers with controlled molecular weight, polydispersity, and end group functionality (Benoit et al., 1999; Wetter et al., 2004). In NMRP, an alkoxyamine is used to initiate and mediate polymerization. The C–O bond of an alkoxyamine is stable to normal purification and handling procedures as well as variety of reaction conditions (Rodlert et al., 2000). However, under appropriate conditions, homolysis of the C—O bond occurs, giving a (relatively stable) nitroxide radical and carbon radical which can initiate radical polymerization. The nitroxides are kinetically persistent radicals, and act as reversible traps for the less stable radical intermediates in the polymerization (Nilsen & Braslau, 2006).

Alkoxyamines based on 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) have been widely used as initiators/mediators to synthesize a variety of linear polymers and block copolymers (van der Veen et al., 2004; Widin et al., 2013). In particular, alkoxyamine 2 (X = H; Figure 4), was found to be especially useful in NMRP (Benoit et al., 1999). The title compound, bromo analog 1 (X = Br) was developed so that 2 could be attached to a polymer, to give a macroinitiator for block copolymer synthesis (Stalmach et al., 2001). It has been used successfully in a number of block copolymer syntheses including polystyrene-b-poly(3-hexylthiophene) (PS-b-P3HT) (Kaul et al., 2010), poly(phenylenevinylene)-b-poly(butylacrylate) (PPV-b-PBA) (Stalmach et al., 2001), and poly(3-hexylthiophene)-b-poly(butylacrylate-stat-C60methylstyrene {P3HT-b-[P(BA-stat-C60MS)]} (Richard et al., 2008). Examples of block copolymers, prepared by TIPNO-mediated polymerizations, that have been successfully utilized in photovoltaic application are poly[(2,5-di(2'ethyl)hexyloxy)-1,4-phenylenevinylene]-b-poly(butylacrylate-stat-C60methylstyrene) [DEH-PPV-b-P(BA-stat-C60MS)], poly(vinyltriphenylamine)-b-poly(perylene bisimide acrylate) (PvTPA-b-PPerAcr) and poly(3-hexylthiophene)-b-poly(perylene bisimide acrylate (P3HT-b-PPerAcr).

The title compound was prepared as a mixture of two diastereomers in nearly equal amounts, as can be seen by the NMR spectrum (Figure 3). The crystal for the X-ray analysis showed one of the diastereomers (Figure 1), a pair of R,S and S,R (at C7 and C13) enantiomers. The tert-butyl group and isopropyl group are in a nearly anti conformation in the crystal (dihedral angle C9, N1, C13, C14 = -168.8 (1)°). The C—Me bond (C7, C8) and N-tert-Bu bond (N1, C9) are in an anti relationship (C8, C7, N1, C9 = 172.3 (1)°), and the C—Me bond (C7, C8) and C-isopropyl bond (C13, C14) are in a syn relationship (C8, C7, C13, C14 = 4.6 (1) degrees). The dihedral angle between the planes of the phenyl groups is 33.12 (7)°.

The bromine atom was disordered over two positions with occupancies of 0.9139 (16) and 0.0961 (16). The central N is pyramidal and all the bond lengths and angles are in the normal ranges (Allen et al., 1987). There are weak C—H···Br intermolecular contacts which link the molecules into chains in the [1 1 0] direction.

Related literature top

For the use of TIPNO-based alkoxyamine in polymer synthesis (TIPNO = 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide), see: Benoit et al. (1999). For the synthesis of the title compound, see: Kaul et al. (2010). For the use of the title compound in block copolymer synthesis, see: Richard et al. (2008); Kaul et al. (2010); Stalmach et al. (2001); van der Veen et al. (2004); Widin et al. (2013). For properties of alkoxyamines, see: Benoit et al. (1999); Wetter et al. (2004); Rodlert et al. (2000); Nilsen & Braslau (2006). For synthesis of 1-(4-bromophenyl) ethylbromide, see: Kodama et al. (2011); Thompson et al. (2011). For standard bond lengths, see: Allen et al. (1987).

Experimental top

(a) 1-(4-Bromophenyl)ethylbromide

1-(4-Bromophenyl)ethylbromide was synthesized according to previously reported procedures. 4-Bromoacetophenone was reduced to 1-(4-bromophenyl)ethanol by sodium borohydride (Kodama et al., 2011), and the product was treated with PBr3 using a procedure of Thompson (Thompson et al., 2011). 1-(4-Bromophenyl)ethylbromide (Kaul et al., 2010) was obtained as colorless liquid in 70% overall yield.

(b) 3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane (1)

3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane was synthesized according to a previously reported method [Kaul et al., 2010] with a modification of the time and temperature. Synthesized 1-(4-bromophenyl) ethylbromide and commercially available 2,2,5-trimethyl-4-phenyl-3-azahexane-3-nitroxide (TIPNO) were reacted in the presence of CuBr and N,N,N'',N',N''-pentamethyldiethylenetriamine (PMDETA) in toluene at 75 oC for 17 hr to form the title compound (1), 3-[1-(4-bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane, in 80% yield as a viscous colorless oil which slowly crystallized in the refrigerator. The synthesized compound was characterized by 1H NMR and its crystal structure was determined by X-ray crystallography. The 1H NMR spectrum (Figure 3) showed the presence of two diastereomers in nearly equal amounts, and was in agreement with the published spectrum (Kaul et al., 2010). A crystal was taken for X-ray crystallography.

1H NMR (400 MHz, CDCl3) (mixture of two diastereomers): δ = 7.55–7.15 (HAr), 4.89 (H5 and H5'), 3.43 (H3), 3.31 (H3'), 2.31 (H2), 1.58 (H6), 1.53 (H6'), 1.42 (H2'), 1.26 (H1), 1.04 (H4'), 0.93 (H1'), 0.78 (H4), 0.54 (H1), 0.25 (H1').

Refinement top

Carbon-bonded hydrogen atoms were included in idealized positions and set to ride on the parent atoms. The bromine atom was disordered over two positions with occupancies of 0.9139 (16) and 0.0961 (16).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. Structural diagram of the title compound. Atomic displacement parameters are at the 30% probability level.
[Figure 2] Fig. 2. Packing diagram of the title compound viewed along the a axis.
[Figure 3] Fig. 3. 1H NMR spectrum of 3-[1-(4-bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane (two diastereomers) in CDCl3
[Figure 4] Fig. 4. Alkoxyamine 2 (X = H) and the title compound, bromo analog 1 (X = Br).
3-[1-(4-Bromophenyl)ethoxy]-2,2,5-trimethyl-4-phenyl-3-azahexane top
Crystal data top
C22H30BrNOZ = 2
Mr = 404.38F(000) = 424
Triclinic, P1Dx = 1.321 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.2595 (4) ÅCell parameters from 4369 reflections
b = 10.0175 (4) Åθ = 3.2–40.9°
c = 12.5257 (6) ŵ = 2.03 mm1
α = 88.798 (4)°T = 123 K
β = 78.824 (4)°Diamond shaped plate, colorless
γ = 89.220 (3)°0.51 × 0.35 × 0.06 mm
V = 1016.45 (8) Å3
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
13014 independent reflections
Radiation source: Enhance (Mo) X-ray Source7448 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
Detector resolution: 10.5081 pixels mm-1θmax = 41.0°, θmin = 3.2°
ω scansh = 1315
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
k = 1818
Tmin = 0.375, Tmax = 0.888l = 1622
23820 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0319P)2 + 0.3044P]
where P = (Fo2 + 2Fc2)/3
13014 reflections(Δ/σ)max = 0.002
237 parametersΔρmax = 0.71 e Å3
14 restraintsΔρmin = 0.78 e Å3
Crystal data top
C22H30BrNOγ = 89.220 (3)°
Mr = 404.38V = 1016.45 (8) Å3
Triclinic, P1Z = 2
a = 8.2595 (4) ÅMo Kα radiation
b = 10.0175 (4) ŵ = 2.03 mm1
c = 12.5257 (6) ÅT = 123 K
α = 88.798 (4)°0.51 × 0.35 × 0.06 mm
β = 78.824 (4)°
Data collection top
Agilent Xcalibur (Ruby, Gemini)
diffractometer
13014 independent reflections
Absorption correction: analytical
[CrysAlis PRO (Agilent, 2012), based on expressions derived by Clark & Reid (1995)]
7448 reflections with I > 2σ(I)
Tmin = 0.375, Tmax = 0.888Rint = 0.040
23820 measured reflectionsθmax = 41.0°
Refinement top
R[F2 > 2σ(F2)] = 0.066H-atom parameters constrained
wR(F2) = 0.123Δρmax = 0.71 e Å3
S = 1.08Δρmin = 0.78 e Å3
13014 reflectionsAbsolute structure: ?
237 parametersAbsolute structure parameter: ?
14 restraintsRogers parameter: ?
Special details top

Experimental. CrysAlisPro (Agilent, 2012) Analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R.C. Clark & J.S. Reid. (Clark & Reid, 1995)

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Br1A0.21657 (3)1.03569 (3)0.31920 (3)0.03904 (8)0.9139 (16)
Br1B0.2097 (3)1.0344 (3)0.2954 (4)0.03904 (8)0.0861 (16)
O10.33888 (11)0.52249 (9)0.26150 (7)0.02013 (18)
N10.42054 (13)0.41412 (11)0.31003 (9)0.0184 (2)
C10.22930 (16)0.73932 (14)0.30589 (11)0.0213 (2)
C20.21935 (18)0.85614 (15)0.36510 (12)0.0263 (3)
H2A0.30430.87570.40360.032*
C30.08780 (19)0.94442 (15)0.36896 (13)0.0282 (3)
H3A0.08251.02440.40890.034*
C40.03621 (15)0.91347 (13)0.31314 (12)0.0255 (3)
C50.03140 (18)0.79814 (15)0.25483 (12)0.0260 (3)
H5A0.11770.77840.21750.031*
C60.10213 (17)0.71062 (15)0.25143 (11)0.0235 (3)
H6A0.10660.63060.21160.028*
C70.38199 (16)0.65120 (14)0.29630 (12)0.0243 (3)
H7A0.41270.64110.36950.029*
C80.5227 (2)0.71609 (18)0.21809 (15)0.0361 (4)
H8A0.62270.66100.21380.054*
H8B0.54240.80500.24400.054*
H8C0.49430.72430.14580.054*
C90.29326 (17)0.35139 (15)0.39863 (11)0.0228 (3)
C100.25278 (19)0.45110 (17)0.49164 (12)0.0297 (3)
H10A0.19740.52980.46700.045*
H10B0.35510.47820.51330.045*
H10C0.18000.40890.55390.045*
C110.3726 (2)0.22698 (17)0.44159 (13)0.0338 (4)
H11A0.38490.15680.38720.051*
H11B0.30210.19500.50920.051*
H11C0.48130.24970.45590.051*
C120.13032 (17)0.31498 (16)0.36504 (13)0.0276 (3)
H12A0.15100.24500.31040.041*
H12B0.08410.39420.33420.041*
H12C0.05200.28250.42900.041*
C130.49844 (15)0.32510 (13)0.21998 (10)0.0188 (2)
H13A0.54530.24790.25630.023*
C140.64814 (15)0.39403 (15)0.14855 (10)0.0209 (2)
H14A0.61020.48010.11920.025*
C150.77943 (17)0.42426 (17)0.21525 (12)0.0273 (3)
H15A0.86610.47890.17130.041*
H15B0.82770.34040.23670.041*
H15C0.72870.47290.28050.041*
C160.72633 (18)0.30662 (18)0.05259 (12)0.0303 (3)
H16A0.82420.35100.01080.045*
H16B0.64630.29310.00550.045*
H16C0.75850.22000.08020.045*
C170.38509 (16)0.26336 (14)0.15192 (10)0.0203 (2)
C180.3761 (2)0.12507 (16)0.14801 (12)0.0283 (3)
H18A0.43970.07120.18810.034*
C190.2754 (2)0.06402 (18)0.08627 (13)0.0363 (4)
H19A0.27040.03060.08470.044*
C200.1827 (2)0.1417 (2)0.02737 (13)0.0372 (4)
H20A0.11250.10070.01380.045*
C210.19305 (18)0.27933 (18)0.02873 (12)0.0299 (3)
H21A0.13040.33270.01240.036*
C220.29426 (17)0.34049 (15)0.08968 (11)0.0232 (3)
H22A0.30160.43510.08900.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br1A0.03220 (8)0.02458 (8)0.0589 (2)0.01144 (6)0.00651 (9)0.00285 (9)
Br1B0.03220 (8)0.02458 (8)0.0589 (2)0.01144 (6)0.00651 (9)0.00285 (9)
O10.0218 (4)0.0146 (4)0.0256 (4)0.0023 (3)0.0084 (3)0.0031 (3)
N10.0176 (4)0.0182 (5)0.0187 (5)0.0036 (4)0.0019 (4)0.0007 (4)
C10.0193 (5)0.0165 (5)0.0273 (6)0.0007 (4)0.0026 (5)0.0019 (5)
C20.0260 (6)0.0197 (6)0.0342 (7)0.0003 (5)0.0079 (5)0.0059 (5)
C30.0305 (7)0.0169 (6)0.0357 (7)0.0018 (5)0.0020 (6)0.0042 (5)
C40.0219 (6)0.0173 (6)0.0346 (7)0.0035 (5)0.0004 (5)0.0046 (5)
C50.0217 (6)0.0256 (7)0.0310 (7)0.0031 (5)0.0061 (5)0.0009 (5)
C60.0204 (5)0.0207 (6)0.0295 (6)0.0011 (5)0.0043 (5)0.0060 (5)
C70.0187 (5)0.0182 (6)0.0367 (7)0.0001 (5)0.0067 (5)0.0058 (5)
C80.0243 (7)0.0267 (8)0.0543 (10)0.0028 (6)0.0009 (7)0.0064 (7)
C90.0204 (5)0.0230 (6)0.0229 (6)0.0009 (5)0.0011 (5)0.0002 (5)
C100.0278 (7)0.0352 (8)0.0232 (6)0.0001 (6)0.0025 (5)0.0050 (6)
C110.0355 (8)0.0317 (8)0.0307 (7)0.0048 (7)0.0008 (6)0.0089 (6)
C120.0206 (6)0.0255 (7)0.0342 (7)0.0038 (5)0.0018 (5)0.0030 (6)
C130.0181 (5)0.0182 (5)0.0200 (5)0.0024 (4)0.0036 (4)0.0023 (4)
C140.0165 (5)0.0248 (6)0.0208 (6)0.0017 (5)0.0024 (4)0.0032 (5)
C150.0188 (5)0.0360 (8)0.0281 (7)0.0005 (5)0.0060 (5)0.0057 (6)
C160.0221 (6)0.0413 (9)0.0260 (7)0.0020 (6)0.0001 (5)0.0110 (6)
C170.0179 (5)0.0213 (6)0.0209 (6)0.0003 (5)0.0012 (4)0.0039 (4)
C180.0334 (7)0.0221 (6)0.0289 (7)0.0010 (6)0.0047 (6)0.0042 (5)
C190.0455 (9)0.0276 (8)0.0352 (8)0.0129 (7)0.0048 (7)0.0080 (6)
C200.0352 (8)0.0463 (10)0.0315 (8)0.0160 (7)0.0075 (6)0.0078 (7)
C210.0232 (6)0.0421 (9)0.0253 (7)0.0041 (6)0.0067 (5)0.0032 (6)
C220.0206 (5)0.0266 (7)0.0222 (6)0.0001 (5)0.0031 (5)0.0035 (5)
Geometric parameters (Å, º) top
Br1A—C41.9064 (11)C11—H11B0.9800
Br1B—C41.9064 (15)C11—H11C0.9800
O1—C71.4406 (17)C12—H12A0.9800
O1—N11.4540 (14)C12—H12B0.9800
N1—C131.4922 (16)C12—H12C0.9800
N1—C91.5061 (18)C13—C171.5274 (18)
C1—C21.3916 (19)C13—C141.5409 (19)
C1—C61.3948 (19)C13—H13A1.0000
C1—C71.5165 (18)C14—C151.5285 (19)
C2—C31.386 (2)C14—C161.5350 (19)
C2—H2A0.9500C14—H14A1.0000
C3—C41.389 (2)C15—H15A0.9800
C3—H3A0.9500C15—H15B0.9800
C4—C51.376 (2)C15—H15C0.9800
C5—C61.3942 (19)C16—H16A0.9800
C5—H5A0.9500C16—H16B0.9800
C6—H6A0.9500C16—H16C0.9800
C7—C81.512 (2)C17—C181.391 (2)
C7—H7A1.0000C17—C221.3975 (19)
C8—H8A0.9800C18—C191.396 (2)
C8—H8B0.9800C18—H18A0.9500
C8—H8C0.9800C19—C201.383 (3)
C9—C101.535 (2)C19—H19A0.9500
C9—C111.536 (2)C20—C211.384 (3)
C9—C121.536 (2)C20—H20A0.9500
C10—H10A0.9800C21—C221.392 (2)
C10—H10B0.9800C21—H21A0.9500
C10—H10C0.9800C22—H22A0.9500
C11—H11A0.9800
C7—O1—N1111.94 (9)C9—C11—H11C109.5
O1—N1—C13107.20 (9)H11A—C11—H11C109.5
O1—N1—C9107.14 (9)H11B—C11—H11C109.5
C13—N1—C9116.38 (11)C9—C12—H12A109.5
C2—C1—C6118.76 (12)C9—C12—H12B109.5
C2—C1—C7119.47 (12)H12A—C12—H12B109.5
C6—C1—C7121.66 (12)C9—C12—H12C109.5
C3—C2—C1121.23 (14)H12A—C12—H12C109.5
C3—C2—H2A119.4H12B—C12—H12C109.5
C1—C2—H2A119.4N1—C13—C17117.31 (10)
C2—C3—C4118.61 (13)N1—C13—C14110.32 (11)
C2—C3—H3A120.7C17—C13—C14112.06 (10)
C4—C3—H3A120.7N1—C13—H13A105.4
C5—C4—C3121.74 (11)C17—C13—H13A105.4
C5—C4—Br1A120.07 (11)C14—C13—H13A105.4
C3—C4—Br1A118.19 (11)C15—C14—C16108.65 (11)
C5—C4—Br1B114.39 (18)C15—C14—C13110.80 (11)
C3—C4—Br1B123.43 (18)C16—C14—C13111.31 (12)
Br1A—C4—Br1B8.81 (16)C15—C14—H14A108.7
C4—C5—C6118.94 (13)C16—C14—H14A108.7
C4—C5—H5A120.5C13—C14—H14A108.7
C6—C5—H5A120.5C14—C15—H15A109.5
C5—C6—C1120.72 (13)C14—C15—H15B109.5
C5—C6—H6A119.6H15A—C15—H15B109.5
C1—C6—H6A119.6C14—C15—H15C109.5
O1—C7—C8113.22 (12)H15A—C15—H15C109.5
O1—C7—C1106.94 (10)H15B—C15—H15C109.5
C8—C7—C1109.28 (12)C14—C16—H16A109.5
O1—C7—H7A109.1C14—C16—H16B109.5
C8—C7—H7A109.1H16A—C16—H16B109.5
C1—C7—H7A109.1C14—C16—H16C109.5
C7—C8—H8A109.5H16A—C16—H16C109.5
C7—C8—H8B109.5H16B—C16—H16C109.5
H8A—C8—H8B109.5C18—C17—C22118.35 (13)
C7—C8—H8C109.5C18—C17—C13119.09 (12)
H8A—C8—H8C109.5C22—C17—C13122.51 (12)
H8B—C8—H8C109.5C17—C18—C19121.19 (15)
N1—C9—C10107.73 (12)C17—C18—H18A119.4
N1—C9—C11107.59 (11)C19—C18—H18A119.4
C10—C9—C11108.01 (12)C20—C19—C18119.81 (16)
N1—C9—C12115.25 (11)C20—C19—H19A120.1
C10—C9—C12107.66 (11)C18—C19—H19A120.1
C11—C9—C12110.36 (13)C19—C20—C21119.62 (15)
C9—C10—H10A109.5C19—C20—H20A120.2
C9—C10—H10B109.5C21—C20—H20A120.2
H10A—C10—H10B109.5C20—C21—C22120.69 (15)
C9—C10—H10C109.5C20—C21—H21A119.7
H10A—C10—H10C109.5C22—C21—H21A119.7
H10B—C10—H10C109.5C21—C22—C17120.29 (15)
C9—C11—H11A109.5C21—C22—H22A119.9
C9—C11—H11B109.5C17—C22—H22A119.9
H11A—C11—H11B109.5
C7—O1—N1—C13130.22 (11)O1—N1—C9—C1250.03 (14)
C7—O1—N1—C9104.18 (12)C13—N1—C9—C1269.86 (15)
C6—C1—C2—C31.2 (2)O1—N1—C13—C1758.63 (14)
C7—C1—C2—C3175.04 (14)C9—N1—C13—C1761.23 (15)
C1—C2—C3—C40.7 (2)O1—N1—C13—C1471.30 (12)
C2—C3—C4—C50.1 (2)C9—N1—C13—C14168.84 (10)
C2—C3—C4—Br1A179.95 (11)N1—C13—C14—C1561.24 (14)
C2—C3—C4—Br1B171.8 (2)C17—C13—C14—C15166.09 (11)
C3—C4—C5—C60.3 (2)N1—C13—C14—C16177.74 (11)
Br1A—C4—C5—C6179.81 (11)C17—C13—C14—C1645.06 (15)
Br1B—C4—C5—C6172.24 (17)N1—C13—C17—C18120.29 (14)
C4—C5—C6—C10.2 (2)C14—C13—C17—C18110.60 (14)
C2—C1—C6—C50.9 (2)N1—C13—C17—C2262.25 (17)
C7—C1—C6—C5175.21 (14)C14—C13—C17—C2266.86 (15)
N1—O1—C7—C895.05 (14)C22—C17—C18—C191.9 (2)
N1—O1—C7—C1144.54 (10)C13—C17—C18—C19179.49 (14)
C2—C1—C7—O1162.77 (13)C17—C18—C19—C200.2 (2)
C6—C1—C7—O121.13 (18)C18—C19—C20—C211.1 (3)
C2—C1—C7—C874.34 (17)C19—C20—C21—C220.7 (2)
C6—C1—C7—C8101.77 (16)C20—C21—C22—C171.0 (2)
O1—N1—C9—C1070.17 (13)C18—C17—C22—C212.3 (2)
C13—N1—C9—C10169.94 (11)C13—C17—C22—C21179.79 (12)
O1—N1—C9—C11173.61 (11)C8—C7—C13—C144.56 (11)
C13—N1—C9—C1153.72 (15)C8—C7—N1—C9172.28 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Br1Ai0.983.123.9782 (16)148
C13—H13A···Br1Aii1.003.074.0358 (13)163
C13—H13A···Br1Bii1.003.023.970 (2)159
C15—H15B···Br1Bii0.983.144.017 (3)149
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···Br1Ai0.983.123.9782 (16)147.6
C13—H13A···Br1Aii1.003.074.0358 (13)162.7
C13—H13A···Br1Bii1.003.023.970 (2)158.6
C15—H15B···Br1Bii0.983.144.017 (3)149.3
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y1, z.
Acknowledgements top

DR and AK would like to thank the US Department of Energy, Division of Basic Energy Sciences under contract No. DE–FG02-10ER4779. RJB wishes to acknowledge the NSF–MRI program (grant CHE-0619278) for funds to purchase the diffractometer and the Howard University Nanoscience Facility for access to liquid nitrogen.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Benoit, D., Chaplinski, V., Braslau, R. & Hawker, C. J. (1999). J. Am. Chem. Soc. 121, 3904–3920.

Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887–897.

Kaul, E., Senkovskyy, V., Tkachov, R., Bocharova, V., Komber, H., Stamm, M. & Kiriy, A. (2010). Macromolecules, 43, 77–81.

Kodama, S., Hashidate, S., Nomoto, A., Yano, S., Ueshima, M. & Ogawa, A. (2011). Chem. Lett. 40, 495–497.

Nilsen, A. & Braslau, R. (2006). J. Polym. Sci. Part A Polym. Chem. 44, 697–717.

Richard, F., Brochon, C., Leclerc, N., Eckhardt, D., Heiser, T. & Hadziioannou, G. (2008). Macromol. Rapid Commun. 29, 885–891.

Rodlert, M., Harth, E., Rees, I. & Hawker, C. J. (2000). J. Polym. Sci. Part A Polym. Chem. 38, 4749–4763.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Stalmach, U., de Boer, B., Post, A. D., van Hutten, P. F. & Hadziioannou, G. (2001). Angew. Chem. Int. Ed. 40, 428–430.

Thompson, A. M., Sutherland, H. S., Palmer, B. D., Kmentova, I., Blaser, A., Franzblau, S. G., Wan, B., Wang, Y., Ma, Z. & Denny, W. A. (2011). J. Med. Chem. 54, 6563–6585.

Veen, M. H. van der, de Boer, B., Stalmach, U., van de Wetering, K. I. & Hadziioannou, G. (2004). Macromolecules, 37, 3673–3684.

Wetter, C., Gierlich, J., Knoop, C. A., Müller, C., Schulte, T. & Studer, A. (2004). Chem. Eur. J. 10, 1156–1166.

Widin, J. M., Kim, M., Schmitt, A. K., Han, E., Gopalan, P. & Mahanthappa, M. K. (2013). Macromolecules, 46, 4472–4480.