supplementary materials


hg5358 scheme

Acta Cryst. (2013). E69, m633-m634    [ doi:10.1107/S1600536813029693 ]

(2-{[4-(Chlorido­mercur­yl)phen­yl]imino­meth­yl}pyridine-[kappa]2N,N')di­iodido­mercury(II) dimethyl sulfoxide monosolvate

T. S. Basu Baul, I. Longkumer, S. W. Ng and E. R. T. Tiekink

Abstract top

The title dimethyl sulfoxide solvate, [Hg2(C12H9ClN2)I2]·C2H6OS, features tetra­hedrally and linearly coordinated HgII atoms. The distorted tetrahedral coordination sphere is defined by chelating N atoms that define an acute angle [69.6 (3)°] and two I atoms that form a wide angle [142.80 (4)°]. The linearly coordinated HgII atom [177.0 (4)°] exists with a donor set defined by C and Cl atoms. Secondary inter­actions are apparent in the crystal packing with the tetra­hedrally and linearly coordinated HgII atoms expanding their coordination environments by forming weak Hg...I [3.772 (7) Å] and Hg...O [2.921 (12) Å] inter­actions, respectively. Mercury-containing mol­ecules stack along the a axis, are connected by [pi]-[pi] inter­actions [inter-centroid distance between pyridine and benzene rings = 3.772 (7) Å] and define channels in which the dimethyl sulfoxide mol­ecules reside. The latter are connected by the aforementioned Hg...O inter­actions as well as C-H...I and C-H...O inter­actions, resulting in a three-dimensional architecture.

Comment top

Investigations in into the coordination chemistry of divalent zinc triad elements with (E)-N-(pyridin-2-ylmethylidene)arylamine ligands (Basu Baul, Kundu, Höpfl et al., 2013; Basu Baul, Kundu, Linden et al., 2013; Basu Baul, Kundu, Mitra et al. 2013) led to the isolation of the title compound, (I).

In (I), Fig. 1, the 2-[((4-chloromercuryl)phenyl)iminomethyl]pyridine, an organomercury ligand, chelates the Hg1 atom with the Hg1—N1(pyridyl) bond length being shorter than the Hg—N2(imino) bond in accord with related structures (Basu Baul, Kundu, Höpfl et al., 2013). The five-membered chelate ring is an envelope with the Hg1 atom lying 0.24 (2) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.0022 Å). In terms of angles, the major distortions from the ideal tetrahedral geometry about the Hg1 atom is found in the acute chelate angle (69.6 (3)°) and the wide angle subtended by the large I atoms (142.80 (4)°). The benzene ring carrying the HgCl atoms is almost co-planar to the pyridyl ring, forming a dihedral angle of 6.5 (6)°. The geometry about the Hg2 atom is linear as expected (177.0 (4)°).

In the crystal packing, centrosymmetrically related molecules associate via weak Hg···I secondary interactions: Hg1···I1i = 3.7027 (12) Å for symmetry operation i: -x, 1 - y, -z. These assemble into columns along the a axis via weak ππ interactions formed between the pyridyl and benzene rings [inter-centroid distance = 3.772 (7) Å for symmetry operation -1 + x, y, z]. In this way channels are formed in which reside the dimethyl sulfoxide molecules of solvation which are connected by weak Hg2···O1 secondary interactions [2.921 (12) Å] as well as weak C—H···I, O contacts, Fig. 2 and Table 2.

Related literature top

For background to the structural, spectroscopic and biological properties of zinc triad elements with (E)-N-(pyridin-2-ylmethylidene)arylamine-type ligands, see: Basu Baul, Kundu, Höpfl et al. (2013); Basu Baul, Kundu, Linden et al. (2013); Basu Baul, Kundu, Mitra et al. (2013).

Experimental top

To a hot solution of 2-[((4-chloromercuryl)phenyl)iminomethyl]pyridine (0.50 g, 1.19 mmol) in methanol (70 ml) was added a solution of HgI2 (0.54 g, 1.18 mmol) in methanol (10 ml) under stirring conditions, whereupon a yellow precipitate formed immediately. The mixture was stirred at ambient temperature for 4 h. The precipitate was filtered, washed with hot methanol (3 x 5 ml) and dried in vacuo. The yellow product (0.79 g, M. pt. 495–497 K (dec.)) so obtained was insoluble in common organic solvents. The yellow crystals of compound suitable for an X-ray crystal-structure determination were obtained from dimethyl sulfoxide by slow evaporation of the solvent at room temperature. M. pt. 447–449 K. CH&N elemental analysis, calculated for C14H15ClHg2I2N2OS: C, 17.69, H, 1.59, N, 2.95%; Found: C, 17.82; H, 1.65; N, 3.07%.

Refinement top

Carbon-bound H-atoms were placed in calculated positions [C—H = 0.93 to 0.96 Å, Uiso(H) 1.2 to 1.5Ueq(C)] and were included in the refinement in the riding model approximation. The maximum and minimum residual electron density peaks of 4.39 and 1.45 e Å-3, respectively, were located 0.99 and 0.80 Å from the Hg1 atom.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO (Agilent, 2013); data reduction: CrysAlis PRO (Agilent, 2013); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. A view of the unit-cell contents in projection down the a axis in (I). The Hg···I, O secondary interactions are shown as pink and black dashed lines, respectively. The ππ, C—H···I and C—H···O interactions are shown as purple, green and orange dashed lines, respectively.
(2-{[4-(Chloridomercuryl)phenyl]iminomethyl}pyridine-κ2N,N')diiodidomercury(II) dimethyl sulfoxide monosolvate top
Crystal data top
[Hg2(C12H9ClN2)I2]·C2H6OSZ = 2
Mr = 949.77F(000) = 840
Triclinic, P1Dx = 3.002 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.5795 (6) ÅCell parameters from 3179 reflections
b = 9.8373 (7) Åθ = 2.9–27.5°
c = 13.6999 (8) ŵ = 17.76 mm1
α = 70.030 (6)°T = 295 K
β = 76.779 (5)°Prism, yellow
γ = 79.362 (6)°0.20 × 0.10 × 0.04 mm
V = 1050.74 (12) Å3
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4848 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3470 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.038
Detector resolution: 10.4041 pixels mm-1θmax = 27.6°, θmin = 2.9°
ω scanh = 1111
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
k = 1211
Tmin = 0.358, Tmax = 1.000l = 1717
12862 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0612P)2 + 7.0509P]
where P = (Fo2 + 2Fc2)/3
4848 reflections(Δ/σ)max < 0.001
208 parametersΔρmax = 4.40 e Å3
0 restraintsΔρmin = 1.45 e Å3
Crystal data top
[Hg2(C12H9ClN2)I2]·C2H6OSγ = 79.362 (6)°
Mr = 949.77V = 1050.74 (12) Å3
Triclinic, P1Z = 2
a = 8.5795 (6) ÅMo Kα radiation
b = 9.8373 (7) ŵ = 17.76 mm1
c = 13.6999 (8) ÅT = 295 K
α = 70.030 (6)°0.20 × 0.10 × 0.04 mm
β = 76.779 (5)°
Data collection top
Agilent SuperNova Dual
diffractometer with an Atlas detector
4848 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2013)
3470 reflections with I > 2σ(I)
Tmin = 0.358, Tmax = 1.000Rint = 0.038
12862 measured reflectionsθmax = 27.6°
Refinement top
R[F2 > 2σ(F2)] = 0.053H-atom parameters constrained
wR(F2) = 0.143Δρmax = 4.40 e Å3
S = 1.03Δρmin = 1.45 e Å3
4848 reflectionsAbsolute structure: ?
208 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Hg10.20510 (6)0.31203 (6)0.05498 (4)0.05488 (18)
Hg20.86627 (6)0.16239 (6)0.39910 (4)0.05315 (17)
I10.45868 (12)0.28767 (13)0.09397 (7)0.0740 (3)
I20.03457 (13)0.49555 (11)0.15600 (8)0.0681 (3)
Cl11.0870 (4)0.1770 (4)0.4659 (3)0.0679 (10)
S10.7709 (5)0.4377 (4)0.5467 (3)0.0681 (10)
O10.6835 (13)0.3252 (12)0.5397 (10)0.083 (3)
N10.0365 (11)0.1207 (10)0.1108 (6)0.040 (2)
N20.2980 (10)0.1073 (11)0.2044 (7)0.041 (2)
C10.0913 (14)0.1244 (14)0.0724 (9)0.047 (3)
H10.12210.20880.02070.057*
C20.1844 (13)0.0080 (15)0.1050 (9)0.046 (3)
H20.27650.01530.07770.056*
C30.1338 (15)0.1155 (16)0.1780 (10)0.054 (3)
H30.19000.19630.20040.065*
C40.0009 (14)0.1216 (14)0.2188 (10)0.052 (3)
H40.03270.20570.26980.063*
C50.0836 (12)0.0018 (12)0.1837 (7)0.036 (2)
C60.2212 (13)0.0050 (14)0.2305 (9)0.046 (3)
H60.25480.09020.28060.056*
C70.4272 (13)0.1129 (13)0.2514 (8)0.039 (2)
C80.4834 (14)0.0020 (15)0.3326 (9)0.048 (3)
H80.43740.08890.35930.058*
C90.6106 (14)0.0163 (16)0.3731 (9)0.054 (3)
H90.64950.06000.42720.065*
C100.6798 (13)0.1435 (14)0.3355 (9)0.043 (3)
C110.6269 (15)0.2541 (14)0.2524 (10)0.050 (3)
H110.67600.33930.22340.060*
C120.4978 (16)0.2369 (13)0.2117 (10)0.050 (3)
H120.46050.31240.15650.060*
C130.632 (2)0.541 (2)0.6187 (12)0.092 (6)
H13A0.61480.48520.69220.138*
H13B0.53220.56480.59340.138*
H13C0.67520.62890.60960.138*
C140.774 (2)0.570 (2)0.4243 (12)0.093 (6)
H14A0.84050.53150.37090.140*
H14B0.81750.65310.42450.140*
H14C0.66650.59840.40980.140*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Hg10.0592 (3)0.0483 (3)0.0548 (3)0.0123 (2)0.0089 (2)0.0109 (2)
Hg20.0496 (3)0.0575 (4)0.0632 (3)0.0044 (2)0.0222 (2)0.0257 (2)
I10.0623 (6)0.0922 (8)0.0572 (5)0.0182 (5)0.0016 (4)0.0137 (5)
I20.0842 (7)0.0544 (6)0.0677 (6)0.0013 (5)0.0185 (5)0.0232 (4)
Cl10.062 (2)0.064 (2)0.090 (2)0.0103 (17)0.0408 (18)0.0204 (19)
S10.068 (2)0.056 (2)0.084 (2)0.0134 (18)0.0129 (18)0.0236 (19)
O10.079 (7)0.053 (7)0.118 (9)0.012 (6)0.014 (6)0.030 (6)
N10.043 (5)0.039 (6)0.036 (4)0.007 (4)0.008 (4)0.008 (4)
N20.033 (5)0.040 (6)0.047 (5)0.006 (4)0.006 (4)0.010 (4)
C10.043 (6)0.044 (7)0.051 (6)0.005 (5)0.005 (5)0.012 (5)
C20.037 (6)0.061 (8)0.058 (7)0.001 (5)0.003 (5)0.046 (6)
C30.048 (7)0.054 (8)0.066 (8)0.024 (6)0.005 (6)0.019 (6)
C40.050 (7)0.042 (7)0.064 (8)0.010 (6)0.013 (6)0.012 (6)
C50.041 (6)0.040 (6)0.033 (5)0.014 (5)0.001 (4)0.016 (4)
C60.046 (6)0.045 (7)0.047 (6)0.013 (5)0.012 (5)0.008 (5)
C70.040 (6)0.036 (6)0.044 (6)0.005 (5)0.004 (4)0.018 (5)
C80.048 (7)0.054 (8)0.044 (6)0.015 (6)0.008 (5)0.013 (5)
C90.046 (7)0.066 (9)0.048 (6)0.003 (6)0.017 (5)0.015 (6)
C100.042 (6)0.047 (7)0.050 (6)0.004 (5)0.014 (5)0.025 (5)
C110.052 (7)0.036 (7)0.065 (7)0.008 (5)0.016 (6)0.016 (6)
C120.070 (8)0.027 (6)0.059 (7)0.008 (6)0.031 (6)0.007 (5)
C130.119 (15)0.087 (14)0.063 (9)0.042 (11)0.027 (9)0.028 (9)
C140.131 (15)0.085 (13)0.071 (10)0.061 (12)0.014 (9)0.029 (9)
Geometric parameters (Å, º) top
Hg1—I12.6581 (11)C4—H40.9300
Hg1—I22.6684 (12)C5—C61.458 (14)
Hg1—N12.395 (9)C6—H60.9300
Hg1—N22.493 (9)C7—C121.350 (16)
Hg2—Cl12.330 (3)C7—C81.391 (16)
Hg2—C102.052 (10)C8—C91.396 (16)
S1—O11.485 (11)C8—H80.9300
S1—C141.734 (16)C9—C101.370 (18)
S1—C131.766 (19)C9—H90.9300
N1—C11.310 (14)C10—C111.375 (16)
N1—C51.340 (13)C11—C121.408 (16)
N2—C61.293 (14)C11—H110.9300
N2—C71.421 (13)C12—H120.9300
C1—C21.405 (17)C13—H13A0.9600
C1—H10.9300C13—H13B0.9600
C2—C31.356 (18)C13—H13C0.9600
C2—H20.9300C14—H14A0.9600
C3—C41.363 (16)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C4—C51.384 (15)
N1—Hg1—N269.6 (3)N2—C6—H6119.1
N1—Hg1—I1114.5 (2)C5—C6—H6119.1
N2—Hg1—I198.0 (2)C12—C7—C8120.1 (10)
N1—Hg1—I2102.0 (2)C12—C7—N2116.4 (10)
N2—Hg1—I2101.1 (2)C8—C7—N2123.4 (10)
I1—Hg1—I2142.80 (4)C7—C8—C9118.4 (11)
C10—Hg2—Cl1177.0 (4)C7—C8—H8120.8
O1—S1—C14103.7 (8)C9—C8—H8120.8
O1—S1—C13107.2 (8)C10—C9—C8121.9 (11)
C14—S1—C1396.1 (9)C10—C9—H9119.1
C1—N1—C5118.4 (9)C8—C9—H9119.1
C1—N1—Hg1125.4 (7)C11—C10—C9119.0 (10)
C5—N1—Hg1116.1 (6)C11—C10—Hg2121.3 (9)
C6—N2—C7124.2 (9)C9—C10—Hg2119.7 (8)
C6—N2—Hg1112.9 (7)C10—C11—C12119.4 (11)
C7—N2—Hg1122.8 (7)C10—C11—H11120.3
N1—C1—C2123.7 (11)C12—C11—H11120.3
N1—C1—H1118.1C7—C12—C11121.2 (11)
C2—C1—H1118.1C7—C12—H12119.4
C3—C2—C1117.0 (11)C11—C12—H12119.4
C3—C2—H2121.5S1—C13—H13A109.5
C1—C2—H2121.5S1—C13—H13B109.5
C4—C3—C2120.2 (11)H13A—C13—H13B109.5
C4—C3—H3119.9S1—C13—H13C109.5
C2—C3—H3119.9H13A—C13—H13C109.5
C3—C4—C5119.6 (11)H13B—C13—H13C109.5
C3—C4—H4120.2S1—C14—H14A109.5
C5—C4—H4120.2S1—C14—H14B109.5
N1—C5—C4121.1 (10)H14A—C14—H14B109.5
N1—C5—C6118.9 (9)S1—C14—H14C109.5
C4—C5—C6119.9 (10)H14A—C14—H14C109.5
N2—C6—C5121.9 (10)H14B—C14—H14C109.5
N2—Hg1—N1—C1177.0 (10)C1—N1—C5—C6177.2 (11)
I1—Hg1—N1—C193.4 (10)Hg1—N1—C5—C65.9 (13)
I2—Hg1—N1—C179.5 (10)C3—C4—C5—N10.5 (19)
N2—Hg1—N1—C56.4 (7)C3—C4—C5—C6177.1 (12)
I1—Hg1—N1—C583.2 (8)C7—N2—C6—C5176.5 (10)
I2—Hg1—N1—C5103.9 (8)Hg1—N2—C6—C56.5 (15)
N1—Hg1—N2—C66.6 (8)N1—C5—C6—N20.7 (18)
I1—Hg1—N2—C6106.7 (8)C4—C5—C6—N2176.0 (12)
I2—Hg1—N2—C6105.4 (8)C6—N2—C7—C12177.5 (12)
N1—Hg1—N2—C7176.3 (9)Hg1—N2—C7—C120.8 (15)
I1—Hg1—N2—C770.4 (8)C6—N2—C7—C81.3 (18)
I2—Hg1—N2—C777.5 (8)Hg1—N2—C7—C8178.0 (9)
C5—N1—C1—C21.4 (18)C12—C7—C8—C91.7 (19)
Hg1—N1—C1—C2177.9 (9)N2—C7—C8—C9179.6 (11)
N1—C1—C2—C32.0 (19)C8—C9—C10—Hg2180.0 (10)
C1—C2—C3—C41.8 (19)Hg2—C10—C11—C12179.5 (10)
C1—N1—C5—C40.6 (17)N2—C7—C12—C11180.0 (12)
Hg1—N1—C5—C4177.4 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.543.458 (18)171
C9—H9···Cl1ii0.932.833.625 (13)145
C13—H13C···Cl1iii0.962.833.721 (19)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.
Selected bond lengths (Å) top
Hg1—I12.6581 (11)Hg1—N22.493 (9)
Hg1—I22.6684 (12)Hg2—Cl12.330 (3)
Hg1—N12.395 (9)Hg2—C102.052 (10)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O1i0.932.543.458 (18)171
C9—H9···Cl1ii0.932.833.625 (13)145
C13—H13C···Cl1iii0.962.833.721 (19)155
Symmetry codes: (i) x+1, y, z+1; (ii) x+2, y, z+1; (iii) x+2, y+1, z+1.
Acknowledgements top

The financial support of the University Grants Commission, New Delhi, India (F. No. 42–396/2013 (SR) TSBB), is gratefully acknowledged. The authors also thank the Ministry of Higher Education (Malaysia) and the University of Malaya for funding structural studies through the High-Impact Research scheme (UM.C/HIR-MOHE/SC/03).

references
References top

Agilent (2013). CrysAlis PRO. Agilent Technologies Inc., Santa Clara, CA, USA.

Basu Baul, T. S., Kundu, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Polyhedron, 55, 270–282.

Basu Baul, T. S., Kundu, S., Linden, A., Raviprakash, N., Manna, S. & Guedes da Silva, F. (2013). Dalton Trans. doi:10.1039/C3DT52336E.

Basu Baul, T. S., Kundu, S., Mitra, S., Höpfl, H., Tiekink, E. R. T. & Linden, A. (2013). Dalton Trans. 42, 1905–1920.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.