[Journal logo]

Volume 69 
Part 12 
Pages o1856-o1857  
December 2013  

Received 18 November 2013
Accepted 26 November 2013
Online 30 November 2013

Key indicators
Single-crystal X-ray study
T = 123 K
Mean [sigma](C-C) = 0.006 Å
R = 0.090
wR = 0.279
Data-to-parameter ratio = 12.2
Details
Open access

2-Methyl­aspartic acid monohydrate

aDepartment of Chemistry, Catholic University of America, Washington, DC 20064, USA,bNASA Goddard Space Flight Center, Greenbelt, MD 20771, USA,cSolar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA, and dDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA
Correspondence e-mail: rbutcher99@yahoo.com

The title compound, C5H9NO4·H2O, is an isomer of the [alpha]-amino acid glutamic acid that crystallizes from water in its zwitterionic form as a monohydrate. It is not one of the 20 proteinogenic [alpha]-amino acids that are used in living systems and differs from the natural amino acids in that it has an [alpha]-methyl group rather than an [alpha]-H atom. In the crystal, an O-H...O hydrogen bond is present between the acid and water mol­ecules while extensive N-H...O and O-H...O hydrogen bonds link the components into a three-dimensional array.

Related literature

For the eighty amino acids that have been detected in meteorites or comets, see: Pizzarello et al. (2006[Pizzarello, S., Cooper, G. W. & Flynn, G. J. (2006). The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles in Meteorites and the Early Solar System II, edited by D. Lauretta, L. A. Leshin & H. Y. McSween Jr. University of Arizona Press, USA.]); Glavin & Dworkin, (2009[Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.]); Burton et al. (2012[Burton, A. S., Stern, J. C., Elsila, J. E., Dworkin, J. P. & Galvin, D. P. (2012). Chem. Soc. Rev. 41, 5459-5472.]). For the role that crystallization plays in chiral separation, see: Blackmond & Klussmann (2007[Blackmond, D. G. & Klussmann, M. (2007). Chem. Commun. pp. 3990-3996.]); Blackmond et al. (2008[Blackmond, D., Viedma, C., Ortiz, J., Torres, T. & Izuma, T. (2008). J. Am. Chem. Soc. 130, 15274-15275.]). For the role of the H atom on the [alpha]-C atom in enhancing the rate of racemization, see: Yamada et al. (1983[Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843-846.]). For the mechanism of racemization of amino acids lacking an [alpha]-H atom, see: Pizzarello & Groy (2011[Pizzarello, S. & Groy, T. L. (2011). Geochim. Cosmochim. Acta, 75, 645-656.]). For the role that crystallization can play in the enrichment of L isovaline and its structure, see: Glavin & Dworkin (2009[Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.]); Butcher et al. (2013[Butcher, R. J., Brewer, G., Burton, A. S. & Dworkin, J. P. (2013). Acta Cryst. E69, o1829-o1830.]). For normal bond lengths and angles, see: Orpen (1993[Orpen, G. A. (1993). Chem. Soc. Rev. 22, 191-197.]). For the number of [alpha]-methyl amino acids that have been observed with L-enanti­omeric excesses up to 20% that are not believed to be the result of contamination, see: Pizzarello & Cronin (2000[Pizzarello, S. & Cronin, J. R. (2000). Geochim. Cosmochim. Acta, 64, 329-338.]); Glavin & Dworkin (2009[Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.]); Glavin et al. (2011[Glavin, D. P., Callahan, M. P., Dworkin, J. P. & Elsila, J. E. (2011). Meteorites Planet. Sci. 45, 1948-1972.], 2012[Glavin, D. P., Elsila, J. E., Burton, A. S., Callahan, M. P., Dworkin, J. P., Hilts, R. W. & Herd, C. D. H. (2012). Meteorites Planet. Sci. 47, 1347-1364.]); Burton et al. (2013[Burton, A. S., Elsila, J. E., Hein, J. E., Glavin, D. P. & Dworkin, J. P. (2013). Meteorites Planet. Sci. 48, 390-402.]).

[Scheme 1]

Experimental

Crystal data
  • C5H9NO4·H2O

  • Mr = 165.15

  • Monoclinic, P 21 /c

  • a = 9.9690 (6) Å

  • b = 12.8677 (6) Å

  • c = 5.8409 (3) Å

  • [beta] = 106.491 (6)°

  • V = 718.44 (7) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 1.20 mm-1

  • T = 123 K

  • 0.49 × 0.12 × 0.04 mm

Data collection
  • Agilent Xcalibur Ruby Gemini diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.682, Tmax = 1.000

  • 5544 measured reflections

  • 1498 independent reflections

  • 1436 reflections with I > 2[sigma](I)

  • Rint = 0.038

Refinement
  • R[F2 > 2[sigma](F2)] = 0.090

  • wR(F2) = 0.279

  • S = 1.20

  • 1498 reflections

  • 123 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.50 e Å-3

  • [Delta][rho]min = -0.53 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O4-H4O...O1W 0.84 (8) 1.78 (8) 2.607 (4) 165 (7)
O1W-H1W1...O2i 0.89 (6) 1.83 (6) 2.705 (4) 168 (6)
O1W-H1W2...O3ii 0.82 (6) 2.09 (6) 2.909 (4) 174 (5)
N1-H1A...O1iii 0.91 (6) 1.93 (6) 2.807 (5) 164 (5)
N1-H1B...O2iv 0.90 (7) 1.94 (7) 2.832 (4) 172 (5)
N1-H1C...O3v 0.88 (6) 2.18 (6) 2.951 (4) 146 (5)
N1-H1C...O3 0.88 (6) 2.50 (6) 3.033 (4) 119 (5)
Symmetry codes: (i) [-x+1, y+{\script{1\over 2}}, -z+{\script{3\over 2}}]; (ii) [x, -y+{\script{3\over 2}}, z-{\script{1\over 2}}]; (iii) x, y, z-1; (iv) [x, -y+{\script{1\over 2}}, z-{\script{1\over 2}}]; (v) -x+1, -y+1, -z+1.

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5362 ).


Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer. GB wishes to acknowledge support of this work from NASA (NNX10AK71A).

References

Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
Blackmond, D. G. & Klussmann, M. (2007). Chem. Commun. pp. 3990-3996.  [CrossRef]
Blackmond, D., Viedma, C., Ortiz, J., Torres, T. & Izuma, T. (2008). J. Am. Chem. Soc. 130, 15274-15275.  [Web of Science] [PubMed]
Burton, A. S., Elsila, J. E., Hein, J. E., Glavin, D. P. & Dworkin, J. P. (2013). Meteorites Planet. Sci. 48, 390-402.  [CrossRef] [ChemPort]
Burton, A. S., Stern, J. C., Elsila, J. E., Dworkin, J. P. & Galvin, D. P. (2012). Chem. Soc. Rev. 41, 5459-5472.  [CrossRef] [ChemPort] [PubMed]
Butcher, R. J., Brewer, G., Burton, A. S. & Dworkin, J. P. (2013). Acta Cryst. E69, o1829-o1830.  [CrossRef] [IUCr Journals]
Glavin, D. P., Callahan, M. P., Dworkin, J. P. & Elsila, J. E. (2011). Meteorites Planet. Sci. 45, 1948-1972.  [CrossRef]
Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.  [CrossRef] [PubMed] [ChemPort]
Glavin, D. P., Elsila, J. E., Burton, A. S., Callahan, M. P., Dworkin, J. P., Hilts, R. W. & Herd, C. D. H. (2012). Meteorites Planet. Sci. 47, 1347-1364.  [CrossRef] [ChemPort]
Orpen, G. A. (1993). Chem. Soc. Rev. 22, 191-197.  [CrossRef] [ChemPort] [Web of Science]
Pizzarello, S., Cooper, G. W. & Flynn, G. J. (2006). The Nature and Distribution of the Organic Material in Carbonaceous Chondrites and Interplanetary Dust Particles in Meteorites and the Early Solar System II, edited by D. Lauretta, L. A. Leshin & H. Y. McSween Jr. University of Arizona Press, USA.
Pizzarello, S. & Cronin, J. R. (2000). Geochim. Cosmochim. Acta, 64, 329-338.  [CrossRef] [PubMed] [ChemPort]
Pizzarello, S. & Groy, T. L. (2011). Geochim. Cosmochim. Acta, 75, 645-656.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843-846.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o1856-o1857   [ doi:10.1107/S1600536813032170 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.