supplementary materials


is5323 scheme

Acta Cryst. (2013). E69, o1802-o1803    [ doi:10.1107/S1600536813031413 ]

1-(2-Bromo­meth­yl-1-phenyl­sulfonyl-1H-indol-3-yl)propan-1-one

M. Umadevi, V. Saravanan, R. Yamuna, A. K. Mohanakrishnan and G. Chakkaravarthi

Abstract top

In the title compound, C18H16BrNO3S, the dihedral angle between the phenyl ring and the indole ring system is 89.91 (11)°. The mol­ecular structure features weak C-H...O and C-H...Br hydrogen bonds. In the crystal, mol­ecules are linked by weak C-H...O hydrogen bonds, forming chains along the a-axis direction. The chains are further linked by C-H...[pi] inter­actions, forming a layer parallel to the ab plane.

Comment top

Indole derivatives exhibit antihepatitis B virus (Chai et al., 2006) and antibacterial (Nieto et al., 2005) activities. We herein report the crystal structure of the title compound (I) (Fig. 1). The bond distances of (I) are comparable with the reported similar structures (Chakkaravarthi et al., 2008, 2010). The bond angles around atom S1 show significant deviation from ideal tetrahedral value [O1—S1—O2 = 120.16 (13)° and N1—S1—C1 = 105.11 (10)°] due to Thorpe-Ignold effect (Bassindale, 1984). The sum of the bond angles around N1 (358.05°) indicates the sp2 hybridization of N1 atom (Beddoes et al., 1986).

The indole ring system is planar, with the dihedral angle between the two rings (N1/C7/C8/C9/C14) and (C9–C14) is 2.00 (12)°. The phenyl ring (C1–C6) makes the dihedral angle of 89.91 (11)° with the indole ring system. The molecular structure is stabilized by weak intramolecular C—H···O and C—H···Br hydrogen bonds (Table 1). The crystal structure exhibit weak intermolecular C—H···O and C—H···π (Table 1 & Fig. 2) interactions.

Related literature top

For the biological activity of indole derivatives, see: Chai et al. (2006); Nieto et al. (2005). For related structures, see: Chakkaravarthi et al. (2008, 2010). For details of the configuration at the S atom, see: Bassindale (1984). For details of N-atom hybridization, see: Beddoes et al. (1986).

Experimental top

A mixture of 1-[2-methyl-1-(phenylsulfonyl)-1H-indol-3-yl]propan-1-one (15 g, 45.87 mmol) and N-bromosuccinimide (9.8 g, 55 mmol) in dry CCl4 (250 ml) containing a catalytic amount of 2,2'-azobis(isobutyronitrile) (50 mg) was refluxed for 3 h. Then, the reaction mixture was cooled to room temperature, filtered off the floated succinimide through Na2SO4 pad and washed with CCl4 (20 ml). Removal of the solvent followed by trituration of the crude product with MeOH (50 ml) gave the title compound, suitable for X-ray diffraction quality.

Refinement top

H atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, with atom labels and 30% probability displacement ellipsoids for non-H atoms.
[Figure 2] Fig. 2. A packing diagram of the title compound viewed down the b axis. Intermolecular hydrogen bonds are shown as dashed lines. H atoms not involving hydrogen bonding have been omitted.
1-(2-Bromomethyl-1-phenylsulfonyl-1H-indol-3-yl)propan-1-one top
Crystal data top
C18H16BrNO3SF(000) = 824
Mr = 406.29Dx = 1.604 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5675 reflections
a = 10.2772 (7) Åθ = 2.6–28.2°
b = 8.6610 (6) ŵ = 2.58 mm1
c = 18.8980 (14) ÅT = 295 K
β = 90.676 (2)°Block, colourless
V = 1682.0 (2) Å30.38 × 0.34 × 0.30 mm
Z = 4
Data collection top
Bruker Kappa APEXII
diffractometer
7303 independent reflections
Radiation source: fine-focus sealed tube3726 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
ω and φ scanθmax = 35.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1615
Tmin = 0.397, Tmax = 0.461k = 1313
25944 measured reflectionsl = 3030
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.133H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0528P)2 + 0.8633P]
where P = (Fo2 + 2Fc2)/3
7303 reflections(Δ/σ)max < 0.001
218 parametersΔρmax = 1.11 e Å3
0 restraintsΔρmin = 0.90 e Å3
Crystal data top
C18H16BrNO3SV = 1682.0 (2) Å3
Mr = 406.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 10.2772 (7) ŵ = 2.58 mm1
b = 8.6610 (6) ÅT = 295 K
c = 18.8980 (14) Å0.38 × 0.34 × 0.30 mm
β = 90.676 (2)°
Data collection top
Bruker Kappa APEXII
diffractometer
3726 reflections with I > 2σ(I)
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
Rint = 0.036
Tmin = 0.397, Tmax = 0.461θmax = 35.0°
25944 measured reflectionsStandard reflections: 0
7303 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.133Δρmax = 1.11 e Å3
S = 1.00Δρmin = 0.90 e Å3
7303 reflectionsAbsolute structure: ?
218 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.3590 (2)0.2855 (3)1.15387 (11)0.0316 (4)
C20.4906 (2)0.2669 (3)1.14030 (14)0.0388 (5)
H20.53490.33871.11300.047*
C30.5545 (2)0.1404 (3)1.16792 (14)0.0478 (6)
H30.64290.12761.15990.057*
C40.4891 (3)0.0341 (4)1.20682 (14)0.0527 (7)
H40.53340.05081.22510.063*
C50.3573 (3)0.0506 (4)1.21952 (16)0.0594 (8)
H50.31340.02361.24560.071*
C60.2917 (2)0.1775 (3)1.19338 (14)0.0468 (6)
H60.20350.19061.20210.056*
C70.03158 (18)0.3688 (2)1.08099 (11)0.0276 (4)
C80.0180 (2)0.2867 (2)1.02518 (11)0.0290 (4)
C90.0851 (2)0.2600 (2)0.97521 (11)0.0304 (4)
C100.0935 (2)0.1861 (3)0.90938 (12)0.0407 (5)
H100.02170.13590.88980.049*
C110.2110 (3)0.1894 (3)0.87400 (14)0.0492 (7)
H110.21730.14070.83030.059*
C120.3188 (3)0.2635 (3)0.90221 (14)0.0491 (7)
H120.39570.26460.87680.059*
C130.3152 (2)0.3356 (3)0.96705 (13)0.0411 (6)
H130.38800.38470.98610.049*
C140.19702 (19)0.3317 (3)1.00296 (11)0.0306 (4)
C150.0399 (2)0.4324 (3)1.14247 (12)0.0358 (5)
H15A0.12350.47171.12640.043*
H15B0.00900.51791.16250.043*
C160.1576 (2)0.2394 (3)1.02006 (13)0.0355 (5)
C170.2006 (2)0.1315 (3)0.96217 (14)0.0419 (6)
H17A0.14400.04180.96210.050*
H17B0.19220.18290.91690.050*
C180.3408 (3)0.0787 (4)0.97091 (16)0.0561 (7)
H18A0.34940.02681.01550.084*
H18B0.36390.00930.93320.084*
H18C0.39750.16680.96960.084*
N10.16494 (16)0.3982 (2)1.06867 (9)0.0299 (4)
O10.21453 (16)0.5195 (2)1.18571 (10)0.0523 (5)
O20.36972 (17)0.5470 (2)1.08811 (11)0.0523 (5)
O30.23528 (17)0.2863 (3)1.06323 (11)0.0571 (5)
S10.28085 (5)0.45547 (7)1.12687 (3)0.03548 (14)
Br10.06733 (3)0.27582 (4)1.215850 (15)0.06069 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0272 (9)0.0409 (12)0.0268 (10)0.0035 (9)0.0028 (8)0.0044 (9)
C20.0273 (10)0.0475 (14)0.0417 (13)0.0015 (9)0.0007 (9)0.0020 (11)
C30.0305 (11)0.0644 (18)0.0484 (15)0.0119 (11)0.0046 (10)0.0013 (13)
C40.0490 (14)0.0675 (19)0.0415 (14)0.0214 (14)0.0025 (12)0.0139 (13)
C50.0545 (16)0.072 (2)0.0515 (16)0.0105 (15)0.0129 (13)0.0290 (15)
C60.0332 (11)0.0619 (17)0.0456 (15)0.0068 (11)0.0090 (10)0.0126 (13)
C70.0253 (8)0.0293 (11)0.0281 (10)0.0034 (8)0.0001 (8)0.0040 (8)
C80.0285 (9)0.0303 (11)0.0281 (10)0.0006 (8)0.0007 (8)0.0036 (8)
C90.0324 (10)0.0318 (11)0.0270 (10)0.0045 (8)0.0001 (8)0.0047 (8)
C100.0456 (13)0.0457 (14)0.0307 (12)0.0055 (11)0.0012 (10)0.0033 (10)
C110.0534 (15)0.0605 (17)0.0339 (13)0.0191 (13)0.0064 (11)0.0038 (12)
C120.0409 (12)0.0657 (18)0.0411 (14)0.0144 (12)0.0138 (11)0.0046 (13)
C130.0302 (10)0.0525 (15)0.0409 (13)0.0053 (10)0.0052 (10)0.0047 (11)
C140.0283 (9)0.0341 (11)0.0294 (10)0.0056 (8)0.0008 (8)0.0040 (9)
C150.0331 (10)0.0424 (13)0.0321 (11)0.0050 (9)0.0036 (9)0.0016 (10)
C160.0308 (10)0.0373 (13)0.0383 (12)0.0023 (9)0.0034 (9)0.0044 (10)
C170.0404 (12)0.0399 (14)0.0452 (14)0.0030 (10)0.0091 (11)0.0015 (11)
C180.0482 (15)0.0594 (18)0.0606 (18)0.0179 (13)0.0115 (13)0.0020 (15)
N10.0244 (7)0.0356 (10)0.0296 (9)0.0016 (7)0.0013 (7)0.0002 (8)
O10.0429 (9)0.0590 (12)0.0548 (11)0.0097 (8)0.0095 (8)0.0286 (9)
O20.0412 (9)0.0383 (10)0.0774 (14)0.0094 (8)0.0049 (9)0.0062 (10)
O30.0341 (9)0.0783 (14)0.0593 (13)0.0117 (9)0.0086 (8)0.0156 (11)
S10.0297 (2)0.0333 (3)0.0434 (3)0.0002 (2)0.0058 (2)0.0068 (2)
Br10.04826 (16)0.0928 (3)0.04125 (16)0.01267 (15)0.01231 (12)0.02479 (15)
Geometric parameters (Å, º) top
C1—C61.386 (3)C11—C121.382 (4)
C1—C21.389 (3)C11—H110.9300
C1—S11.750 (2)C12—C131.376 (4)
C2—C31.376 (4)C12—H120.9300
C2—H20.9300C13—C141.399 (3)
C3—C41.361 (4)C13—H130.9300
C3—H30.9300C14—N11.411 (3)
C4—C51.385 (4)C15—Br11.963 (2)
C4—H40.9300C15—H15A0.9700
C5—C61.378 (4)C15—H15B0.9700
C5—H50.9300C16—O31.218 (3)
C6—H60.9300C16—C171.502 (3)
C7—C81.366 (3)C17—C181.522 (3)
C7—N11.416 (2)C17—H17A0.9700
C7—C151.488 (3)C17—H17B0.9700
C8—C91.446 (3)C18—H18A0.9600
C8—C161.494 (3)C18—H18B0.9600
C9—C101.403 (3)C18—H18C0.9600
C9—C141.403 (3)N1—S11.6864 (18)
C10—C111.387 (4)O1—S11.4236 (18)
C10—H100.9300O2—S11.4193 (19)
C6—C1—C2121.0 (2)C12—C13—C14117.0 (2)
C6—C1—S1119.62 (17)C12—C13—H13121.5
C2—C1—S1119.21 (19)C14—C13—H13121.5
C3—C2—C1118.9 (2)C13—C14—C9122.8 (2)
C3—C2—H2120.6C13—C14—N1129.1 (2)
C1—C2—H2120.6C9—C14—N1108.08 (17)
C4—C3—C2120.5 (2)C7—C15—Br1111.86 (16)
C4—C3—H3119.8C7—C15—H15A109.2
C2—C3—H3119.8Br1—C15—H15A109.2
C3—C4—C5120.9 (2)C7—C15—H15B109.2
C3—C4—H4119.5Br1—C15—H15B109.2
C5—C4—H4119.5H15A—C15—H15B107.9
C6—C5—C4119.7 (3)O3—C16—C8120.1 (2)
C6—C5—H5120.2O3—C16—C17120.4 (2)
C4—C5—H5120.2C8—C16—C17119.5 (2)
C5—C6—C1119.1 (2)C16—C17—C18112.2 (2)
C5—C6—H6120.5C16—C17—H17A109.2
C1—C6—H6120.5C18—C17—H17A109.2
C8—C7—N1108.64 (18)C16—C17—H17B109.2
C8—C7—C15127.79 (19)C18—C17—H17B109.2
N1—C7—C15123.36 (19)H17A—C17—H17B107.9
C7—C8—C9108.54 (18)C17—C18—H18A109.5
C7—C8—C16122.81 (19)C17—C18—H18B109.5
C9—C8—C16128.6 (2)H18A—C18—H18B109.5
C10—C9—C14118.3 (2)C17—C18—H18C109.5
C10—C9—C8134.9 (2)H18A—C18—H18C109.5
C14—C9—C8106.79 (19)H18B—C18—H18C109.5
C11—C10—C9118.8 (2)C14—N1—C7107.94 (17)
C11—C10—H10120.6C14—N1—S1121.55 (14)
C9—C10—H10120.6C7—N1—S1128.56 (14)
C12—C11—C10121.5 (2)O2—S1—O1120.16 (13)
C12—C11—H11119.3O2—S1—N1106.36 (11)
C10—C11—H11119.3O1—S1—N1106.44 (9)
C13—C12—C11121.6 (2)O2—S1—C1108.93 (11)
C13—C12—H12119.2O1—S1—C1108.79 (11)
C11—C12—H12119.2N1—S1—C1105.11 (10)
C6—C1—C2—C31.2 (4)N1—C7—C15—Br1103.6 (2)
S1—C1—C2—C3173.4 (2)C7—C8—C16—O37.0 (4)
C1—C2—C3—C41.2 (4)C9—C8—C16—O3171.7 (2)
C2—C3—C4—C50.1 (5)C7—C8—C16—C17171.8 (2)
C3—C4—C5—C61.0 (5)C9—C8—C16—C179.5 (3)
C4—C5—C6—C10.9 (5)O3—C16—C17—C186.7 (4)
C2—C1—C6—C50.2 (4)C8—C16—C17—C18172.2 (2)
S1—C1—C6—C5174.4 (2)C13—C14—N1—C7177.2 (2)
N1—C7—C8—C90.5 (2)C9—C14—N1—C70.8 (2)
C15—C7—C8—C9175.3 (2)C13—C14—N1—S117.4 (3)
N1—C7—C8—C16178.40 (19)C9—C14—N1—S1164.61 (15)
C15—C7—C8—C163.7 (3)C8—C7—N1—C140.2 (2)
C7—C8—C9—C10179.2 (2)C15—C7—N1—C14174.9 (2)
C16—C8—C9—C100.4 (4)C8—C7—N1—S1163.90 (16)
C7—C8—C9—C141.0 (2)C15—C7—N1—S121.1 (3)
C16—C8—C9—C14177.8 (2)C14—N1—S1—O249.4 (2)
C14—C9—C10—C111.1 (3)C7—N1—S1—O2148.47 (19)
C8—C9—C10—C11176.9 (2)C14—N1—S1—O1178.65 (18)
C9—C10—C11—C120.0 (4)C7—N1—S1—O119.2 (2)
C10—C11—C12—C130.8 (4)C14—N1—S1—C166.04 (19)
C11—C12—C13—C140.5 (4)C7—N1—S1—C196.1 (2)
C12—C13—C14—C90.7 (4)C6—C1—S1—O2179.4 (2)
C12—C13—C14—N1178.4 (2)C2—C1—S1—O24.7 (2)
C10—C9—C14—C131.5 (3)C6—C1—S1—O146.8 (2)
C8—C9—C14—C13177.0 (2)C2—C1—S1—O1127.98 (19)
C10—C9—C14—N1179.7 (2)C6—C1—S1—N166.9 (2)
C8—C9—C14—N11.1 (2)C2—C1—S1—N1118.35 (19)
C8—C7—C15—Br182.3 (2)
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Br10.932.893.815 (2)171
C13—H13···O20.932.392.978 (3)121
C15—H15B···O10.972.152.833 (3)126
C2—H2···O3i0.932.593.191 (3)123
C15—H15A···Cg3ii0.972.743.486 (3)134
C18—H18B···Cg2iii0.962.663.616 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x, y, z+2.
Hydrogen-bond geometry (Å, º) top
Cg2 and Cg3 are the centroids of the C1–C6 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C6—H6···Br10.932.893.815 (2)171
C13—H13···O20.932.392.978 (3)121
C15—H15B···O10.972.152.833 (3)126
C2—H2···O3i0.932.593.191 (3)123
C15—H15A···Cg3ii0.972.743.486 (3)134
C18—H18B···Cg2iii0.962.663.616 (3)174
Symmetry codes: (i) x+1, y, z; (ii) x, y+1, z+2; (iii) x, y, z+2.
Acknowledgements top

The authors wish to acknowledge the SAIF, IIT, Madras, for the data collection.

references
References top

Bassindale, A. (1984). In The Third Dimension in Organic Chemistry. New York: John Wiley and Sons.

Beddoes, R. L., Dalton, L., Joule, T. A., Mills, O. S., Street, J. D. & Watt, C. I. F. (1986). J. Chem. Soc. Perkin Trans. 2, pp. 787–797.

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Chai, H., Zhao, C. & Gong, P. (2006). Bioorg. Med. Chem. 14, 911–917.

Chakkaravarthi, G., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2008). Acta Cryst. E64, o749.

Chakkaravarthi, G., Panchatcharam, R., Dhayalan, V., Mohanakrishnan, A. K. & Manivannan, V. (2010). Acta Cryst. E66, o2957.

Nieto, M. J., Alovero, F. L., Manzo, R. H. & Mazzieri, M. R. (2005). Eur. J. Med. Chem. 40, 361–369.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.