[Journal logo]

Volume 69 
Part 12 
Pages o1829-o1830  
December 2013  

Received 23 October 2013
Accepted 20 November 2013
Online 27 November 2013

Key indicators
Single-crystal X-ray study
T = 123 K
Mean [sigma](C-C) = 0.005 Å
R = 0.056
wR = 0.162
Data-to-parameter ratio = 13.2
Details
Open access

Isovaline monohydrate

aDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA,bDepartment of Chemistry, Catholic University of America, Washington, DC 20064, USA,cNASA Johnson Space Center, Astromaterial and Exploration Science Directorate, Houston, TX 77058, USA, and dSolar System Exploration Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Correspondence e-mail: rbutcher99@yahoo.com

The title compound, C5H11NO2·H2O, is an isomer of the [alpha]-amino acid valine that crystallizes from water in its zwitterion form as a monohydrate. It is not one of the 20 proteinogenic amino acids that are used in living systems and differs from the natural amino acids in that it has no [alpha]-H atom. The compound exhibits hydrogen bonding between the water mol­ecule and the carboxyl­ate O atoms and an amine H atom. In addition, there are inter­molecular hydrogen-bonding inter­actions between the carboxyl­ate O atoms and amine H atoms. In the crystal, these extensive N-H...O and O-H...O hydrogen bonds lead to the formation of a three-dimensional network.

Related literature

The structure of the title compound or its salts have not been reported to the CCDC but there are reports of homoleptic coordination complexes of zinc(II) with isovaline, see: Strasdelt et al. (2001[Strasdelt, H., Busching, I., Behrends, S., Saak, W. & Barklage, W. (2001). Chem. Eur. J. 7, 1133-1137.]). For literature related to eighty amino acids that have been detected in meteorites or comets, see: Glavin & Dworkin (2009[Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.]); Burton et al. (2012[Burton, A. S., Stern, J. C., Elsila, J. E., Dworkin, J. P. & Glavin, D. P. (2012). Chem. Soc. Rev. 41, 5459-5472.]). For the role that crystallization plays in chiral separation, see: Blackmond & Klussmann (2007[Blackmond, D. G. & Klussmann, M. (2007). Chem. Commun. pp. 3990-3996.]); Blackmond et al. (2008[Blackmond, D., Viedma, C., Ortiz, J., Torres, T. & Izuma, T. (2008). J. Am. Chem. Soc. 130, 15274-15275.]). For the role of the H atom on the [alpha]-C atom in enhancing the rate of racemization, see: Yamada et al. (1983[Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843-846.]). For the mechanism of racemization of amino acids lacking an [alpha]-H atom, see: Pizzarello & Groy (2011[Pizzarello, S. & Groy, T. L. (2011). Geochim. Cosmochim. Acta, 75, 645-656.]). For the role that crystallization can play in the enrichment of L-isovaline, see: Glavin & Dworkin (2009[Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.]); Bada (2009[Bada, J. L. (2009). Proc. Natl Acad. Sci. 106, E85.]); Bonner et al. (1979[Bonner, W. A., Blair, N. E., Lemmon, R. M., Flores, J. J. & Pollock, G. E. (1979). Geochim. Cosmochim. Acta, 43, 1841-1846.]). For normal bond lengths and angles, see: Orpen (1993[Orpen, G. A. (1993). Chem. Soc. Rev. 22, 191-197.]).

[Scheme 1]

Experimental

Crystal data
  • C5H11NO2·H2O

  • Mr = 135.16

  • Orthorhombic, P 21 21 21

  • a = 5.9089 (5) Å

  • b = 10.4444 (10) Å

  • c = 11.9274 (11) Å

  • V = 736.10 (12) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 0.84 mm-1

  • T = 123 K

  • 0.48 × 0.08 × 0.06 mm

Data collection
  • Agilent Xcalibur (Ruby, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]) Tmin = 0.383, Tmax = 1.000

  • 1662 measured reflections

  • 1204 independent reflections

  • 1072 reflections with I > 2[sigma](I)

  • Rint = 0.072

Refinement
  • R[F2 > 2[sigma](F2)] = 0.056

  • wR(F2) = 0.162

  • S = 1.11

  • 1204 reflections

  • 91 parameters

  • 3 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • [Delta][rho]max = 0.37 e Å-3

  • [Delta][rho]min = -0.27 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
O1W-H1W1...O1i 0.83 (2) 2.05 (2) 2.811 (3) 152 (4)
O1W-H1W2...O2ii 0.83 (2) 1.96 (2) 2.787 (3) 171 (5)
N1-H1A...O2i 0.91 1.84 2.745 (3) 177
N1-H1C...O1W 0.91 2.09 2.792 (4) 133
N1-H1B...O1iii 0.91 1.98 2.832 (3) 156
Symmetry codes: (i) x+1, y, z; (ii) [-x+{\script{1\over 2}}, -y+1, z+{\script{1\over 2}}]; (iii) [x+{\script{1\over 2}}, -y+{\script{1\over 2}}, -z+1].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: SHELXTL (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); software used to prepare material for publication: SHELXTL.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2178 ).


Acknowledgements

RJB wishes to acknowledge the NSF-MRI program (grant CHE-0619278) for funds to purchase the diffractometer. GB wishes to acknowledge support of this work from NASA (NNX10AK71A)

References

Agilent (2012). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
Bada, J. L. (2009). Proc. Natl Acad. Sci. 106, E85.  [CrossRef] [PubMed]
Blackmond, D. G. & Klussmann, M. (2007). Chem. Commun. pp. 3990-3996.  [CrossRef]
Blackmond, D., Viedma, C., Ortiz, J., Torres, T. & Izuma, T. (2008). J. Am. Chem. Soc. 130, 15274-15275.  [Web of Science] [PubMed]
Bonner, W. A., Blair, N. E., Lemmon, R. M., Flores, J. J. & Pollock, G. E. (1979). Geochim. Cosmochim. Acta, 43, 1841-1846.  [CrossRef] [ChemPort] [Web of Science]
Burton, A. S., Stern, J. C., Elsila, J. E., Dworkin, J. P. & Glavin, D. P. (2012). Chem. Soc. Rev. 41, 5459-5472.  [Web of Science] [CrossRef] [ChemPort] [PubMed]
Glavin, D. P. & Dworkin, J. P. (2009). Proc. Natl Acad. Sci. 106, 5487-5492.  [CrossRef] [PubMed] [ChemPort]
Orpen, G. A. (1993). Chem. Soc. Rev. 22, 191-197.  [CrossRef] [ChemPort] [Web of Science]
Pizzarello, S. & Groy, T. L. (2011). Geochim. Cosmochim. Acta, 75, 645-656.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Strasdelt, H., Busching, I., Behrends, S., Saak, W. & Barklage, W. (2001). Chem. Eur. J. 7, 1133-1137.  [PubMed]
Yamada, S., Hongo, C., Yoshioka, R. & Chibata, I. (1983). J. Org. Chem. 48, 843-846.  [CrossRef] [ChemPort]


Acta Cryst (2013). E69, o1829-o1830   [ doi:10.1107/S1600536813031620 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.