supplementary materials


lh5666 scheme

Acta Cryst. (2013). E69, m664-m665    [ doi:10.1107/S1600536813030638 ]

Poly[[mu]3-aqua-aqua-[mu]5-(4-nitro­benzoato)-caesium]

G. Smith

Abstract top

In the structure of the title complex, [Cs(C7H4NO2)(H2O)2]n, the caesium salt of 4-nitro­benzoic acid, the irregular CsO9 coordination sphere comprises three bridging nitro O-atom donors, a bidentate carboxyl­ate O,O'-chelate inter­action, a triple-bridging water mol­ecule and a monodentate water mol­ecule. A three-dimensional framework polymer is generated, within which there are water-carboxyl­ate O-H...O and water-water O-H...O hydrogen-bonding inter­actions.

Comment top

4-Nitrobenzoic acid (PNBA) has proved to be a useful ligand for the preparation of metal complexes, which are mainly monomeric but rarely involve the nitro group in coordination. With the known alkali metal salts of PNBA, the sodium salt (a trihydrate) (Turowska-Tyrk et al., 1988) and the potassium salt (a 1:1 salt-acid adduct) (Srivastava & Speakman, 1961), coordination polymeric structures are formed, but the structures of the rubidium and caesium salts have not been reported. The reaction of 4-nitrobenzoic acid with caesium hydroxide in aqueous ethanol afforded good crystals of the title Cs complex, [Cs(C7H4NO2)(H2O)2]n and the structure is reported herein.

In this structure (Fig. 1), the irregular CsO9 coordinate polyhedron comprises a bidentate carboxylate O,O'-chelate interaction, three O-donors from an O,O'-bridging nitro group, three O donors from a triple-bridging water molecule (O2W) and a monodentate water molecule (O1W) [Cs—O, 3.047 (4)–3.338 (4) Å] (Table 1). The bridging extensions in the two-dimensional sheet substructures which extend along the (0 0 1) plane include a centrosymmetric water–carboxyl quadruple cage (Fig. 2) (Cs···Csiii = 4.2610 (6) Å] [for symmetry code (iii), see Table 2]. The p-related carboxyl and nitro substituent groups of the PNBA ligand link the sheets across c, and generate an overall a three-dimensional coordination polymer (Fig. 3). This type of structure extension through the p-related benzoate carboxyl and nitro functional groups is similar to that found in other alkali metal complexes with the 4-nitroanthranilate salts of sodium (a dihydrate) and potassium (a monohydrate) (Smith, 2013), and caesium (a monohydrate) (Smith & Wermuth, 2011).

The crystal structure of the title complex polymer is stabilized by intra-sheet water O—H···Ocarboxyl and O—H···Owater hydrogen-bonding interactions (Table 2). No inter-ring ππ interactions are present [minimun ring centroid separation 4.643 (2) Å]. The PABA ligand in the complex is essentially planar [torsion angles C2—C1—C11—O12 = 177.9 (4)° (carboxyl) and C3—C4—N41—O41 = 177.5 (4)° (nitro)]. This conformation is similar to that found in both monoclinic polymorphs of the parent acid [Tonogaki et al., 1993; Groth, 1980; Bolte, 2009].

Related literature top

For structures of alkali metal salts of 4-nitrobenzoic acid, see: Turowska-Tyrk et al. (1988) (Na); Srivastava & Speakman (1961) (K). For the structures of Na, K and Cs complexes with 4-nitroanthranilic acid, see: Smith & Wermuth (2011); Smith (2013). For the structures of the 4-nitrobenzoic acid polymorphs, see: Groth (1980); Tonogaki et al. (1993); Bolte (2009).

Experimental top

The title compound was synthesized by heating together for 10 minutes, 0.5 mmol of 4-nitrobenzoic acid and 0.5 mmol of CsOH in 15 ml of 10% ethanol–water. Partial room temperature evaporation of the solution gave colourless elongated crystal plates of the title complex from which a specimen was cleaved for the X-ray analysis.

Refinement top

Carbon-bound hydrogen atoms were placed in calculated positions [C—H = 0.95 Å] and allowed to ride in the refinement, with Uiso(H) = 1.2Ueq(C). Hydrogen atoms of the coordinated water molecule were located in a difference Fourier map but were subsequently allowed to ride, with Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis PRO (Agilent, 2012); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for the coordination polyhedron of title complex, with non-H atoms drawn as 40% probability displacement ellipsoids. For symmetry codes: see Table 1.
[Figure 2] Fig. 2. A partial expansion of the CsO9 coordination sphere in the polymeric structure. For symmetry codes: (vii) x + 1, y, z; (viii) -x, -y, -z + 1. For other symmetry codes, see Fig. 1 and Table 1.
[Figure 3] Fig. 3. The packing of the structure in the unit cell viewed along a. Hydrogen-bonding associations are shown as dashed lines.
Poly[µ3-aqua-aqua-µ5-(4-nitrobenzoato)-caesium] top
Crystal data top
[Cs(C7H4NO2)(H2O)2]F(000) = 640
Mr = 335.05Dx = 2.135 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2366 reflections
a = 6.0700 (3) Åθ = 3.5–28.1°
b = 7.1073 (4) ŵ = 3.56 mm1
c = 24.2183 (13) ÅT = 200 K
β = 94.035 (5)°Plate, colourless
V = 1042.22 (10) Å30.28 × 0.18 × 0.05 mm
Z = 4
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2057 independent reflections
Radiation source: Enhance (Mo) X-ray source1836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 16.077 pixels mm-1θmax = 26.0°, θmin = 3.3°
ω scansh = 77
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
k = 88
Tmin = 0.604, Tmax = 0.980l = 2229
6334 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.074H-atom parameters constrained
S = 1.15 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.878P]
where P = (Fo2 + 2Fc2)/3
2057 reflections(Δ/σ)max = 0.001
136 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
[Cs(C7H4NO2)(H2O)2]V = 1042.22 (10) Å3
Mr = 335.05Z = 4
Monoclinic, P21/nMo Kα radiation
a = 6.0700 (3) ŵ = 3.56 mm1
b = 7.1073 (4) ÅT = 200 K
c = 24.2183 (13) Å0.28 × 0.18 × 0.05 mm
β = 94.035 (5)°
Data collection top
Oxford Diffraction Gemini-S CCD-detector
diffractometer
2057 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2012)
1836 reflections with I > 2σ(I)
Tmin = 0.604, Tmax = 0.980Rint = 0.036
6334 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.074Δρmax = 0.56 e Å3
S = 1.15Δρmin = 0.67 e Å3
2057 reflectionsAbsolute structure: ?
136 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cs10.25378 (4)0.19824 (4)0.47189 (1)0.0259 (1)
O1W0.2785 (5)0.5049 (5)0.56462 (14)0.0354 (11)
O2W0.7695 (5)0.2283 (5)0.51753 (15)0.0347 (11)
O110.3802 (5)0.0475 (5)0.10793 (14)0.0333 (11)
O120.0968 (5)0.0945 (5)0.14338 (15)0.0400 (11)
O410.6184 (7)0.0192 (5)0.40379 (16)0.0467 (14)
O420.9117 (7)0.0828 (7)0.36824 (17)0.0576 (16)
N410.7213 (7)0.0261 (6)0.36407 (17)0.0311 (12)
C10.4023 (7)0.0137 (5)0.20429 (19)0.0189 (11)
C20.6135 (7)0.0617 (6)0.2120 (2)0.0236 (14)
C30.7195 (7)0.0745 (6)0.26440 (19)0.0235 (14)
C40.6093 (7)0.0113 (6)0.30818 (19)0.0229 (14)
C50.4009 (7)0.0646 (6)0.30250 (19)0.0250 (14)
C60.2985 (7)0.0777 (6)0.25023 (19)0.0223 (14)
C110.2830 (7)0.0201 (6)0.1477 (2)0.0252 (14)
H20.686200.104900.180900.0280*
H30.864000.125600.269800.0280*
H50.329400.107000.333900.0300*
H60.154900.131000.245300.0270*
H11W0.378900.537100.586800.0530*
H12W0.149600.488300.582300.0530*
H21W0.726700.301900.494700.0520*
H22W0.798000.292000.546500.0520*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cs10.0259 (2)0.0272 (2)0.0240 (2)0.0000 (1)0.0015 (1)0.0013 (1)
O1W0.0348 (18)0.052 (2)0.0189 (19)0.0046 (17)0.0014 (14)0.0006 (16)
O2W0.044 (2)0.0296 (17)0.030 (2)0.0030 (15)0.0003 (16)0.0028 (15)
O110.0334 (18)0.049 (2)0.0173 (19)0.0022 (16)0.0010 (14)0.0089 (16)
O120.0335 (19)0.055 (2)0.030 (2)0.0104 (18)0.0092 (15)0.0061 (18)
O410.065 (3)0.056 (2)0.018 (2)0.002 (2)0.0040 (18)0.0036 (18)
O420.049 (2)0.085 (3)0.036 (3)0.015 (2)0.0171 (19)0.007 (2)
N410.042 (2)0.033 (2)0.017 (2)0.0051 (19)0.0076 (19)0.0057 (18)
C10.020 (2)0.0163 (19)0.020 (2)0.0015 (17)0.0021 (18)0.0017 (18)
C20.027 (2)0.021 (2)0.023 (3)0.0022 (18)0.0028 (19)0.0012 (19)
C30.023 (2)0.024 (2)0.023 (3)0.0029 (19)0.0008 (19)0.0037 (19)
C40.028 (2)0.020 (2)0.020 (3)0.0046 (19)0.0041 (19)0.0051 (18)
C50.034 (2)0.024 (2)0.018 (3)0.001 (2)0.008 (2)0.0026 (19)
C60.023 (2)0.021 (2)0.023 (3)0.0010 (18)0.0028 (18)0.0009 (19)
C110.028 (2)0.025 (2)0.022 (3)0.005 (2)0.003 (2)0.002 (2)
Geometric parameters (Å, º) top
Cs1—O1W3.126 (3)O2W—H21W0.7900
Cs1—O2W3.253 (3)O2W—H22W0.8400
Cs1—O413.244 (4)N41—C41.475 (6)
Cs1—O2Wi3.220 (3)C1—C21.390 (6)
Cs1—O42i3.248 (4)C1—C61.393 (6)
Cs1—O11ii3.215 (3)C1—C111.505 (7)
Cs1—O12ii3.338 (4)C2—C31.385 (7)
Cs1—O2Wiii3.047 (4)C3—C41.369 (6)
Cs1—O41iii3.310 (4)C4—C51.373 (6)
O11—C111.260 (6)C5—C61.374 (6)
O12—C111.246 (5)C2—H20.9500
O41—N411.226 (6)C3—H30.9500
O42—N411.221 (6)C5—H50.9500
O1W—H11W0.8200C6—H60.9500
O1W—H12W0.9300
O1W—Cs1—O2W73.36 (8)Cs1v—O12—C1187.7 (3)
O1W—Cs1—O41134.24 (9)Cs1—O41—N41132.6 (3)
O1W—Cs1—O2Wi72.89 (8)Cs1—O41—Cs1iii81.10 (9)
O1W—Cs1—O42i136.65 (10)Cs1iii—O41—N41135.6 (3)
O1W—Cs1—O11ii83.74 (9)Cs1iv—O42—N41134.2 (3)
O1W—Cs1—O12ii106.92 (9)H11W—O1W—H12W110.00
O1W—Cs1—O2Wiii129.32 (9)Cs1—O1W—H11W132.00
O1W—Cs1—O41iii67.55 (9)Cs1—O1W—H12W104.00
O2W—Cs1—O4161.92 (9)Cs1iv—O2W—H21W94.00
O2W—Cs1—O2Wi139.38 (9)Cs1—O2W—H21W63.00
O2W—Cs1—O42i145.77 (10)Cs1—O2W—H22W117.00
O2W—Cs1—O11ii110.50 (8)H21W—O2W—H22W105.00
O2W—Cs1—O12ii86.77 (8)Cs1iii—O2W—H22W118.00
O2W—Cs1—O2Wiii94.93 (9)Cs1iii—O2W—H21W135.00
O2W—Cs1—O41iii63.75 (10)Cs1iv—O2W—H22W101.00
O2Wi—Cs1—O41151.44 (9)O41—N41—O42123.6 (4)
O41—Cs1—O42i84.76 (11)O42—N41—C4118.2 (4)
O11ii—Cs1—O41102.41 (9)O41—N41—C4118.3 (4)
O12ii—Cs1—O4163.24 (9)C2—C1—C11120.9 (4)
O2Wiii—Cs1—O4166.80 (9)C2—C1—C6118.9 (4)
O41—Cs1—O41iii98.90 (10)C6—C1—C11120.1 (4)
O2Wi—Cs1—O42i74.49 (10)C1—C2—C3120.9 (4)
O2Wi—Cs1—O11ii87.52 (8)C2—C3—C4117.9 (4)
O2Wi—Cs1—O12ii124.49 (8)C3—C4—C5123.3 (4)
O2Wi—Cs1—O2Wiii89.33 (9)N41—C4—C3118.0 (4)
O2Wi—Cs1—O41iii82.79 (10)N41—C4—C5118.8 (4)
O11ii—Cs1—O42i67.02 (11)C4—C5—C6118.2 (4)
O12ii—Cs1—O42i70.23 (10)C1—C6—C5120.9 (4)
O2Wiii—Cs1—O42i77.45 (11)O11—C11—O12124.7 (4)
O41iii—Cs1—O42i134.58 (11)O11—C11—C1117.6 (4)
O11ii—Cs1—O12ii39.52 (8)O12—C11—C1117.7 (4)
O2Wiii—Cs1—O11ii143.86 (9)C1—C2—H2120.00
O11ii—Cs1—O41iii151.25 (9)C3—C2—H2120.00
O2Wiii—Cs1—O12ii121.77 (9)C2—C3—H3121.00
O12ii—Cs1—O41iii150.49 (9)C4—C3—H3121.00
O2Wiii—Cs1—O41iii63.27 (9)C4—C5—H5121.00
Cs1—O2W—Cs1iv139.38 (12)C6—C5—H5121.00
Cs1—O2W—Cs1iii85.07 (8)C1—C6—H6119.00
Cs1iv—O2W—Cs1iii90.67 (9)C5—C6—H6120.00
Cs1v—O11—C1193.0 (3)
O1W—Cs1—O2W—Cs1iv145.1 (2)O1W—Cs1—O12ii—C11ii76.3 (3)
O1W—Cs1—O2W—Cs1iii129.64 (10)O2W—Cs1—O12ii—C11ii147.8 (3)
O41—Cs1—O2W—Cs1iv24.89 (16)O41—Cs1—O12ii—C11ii152.2 (3)
O41—Cs1—O2W—Cs1iii60.38 (9)O1W—Cs1—O2Wiii—Cs1iii72.49 (11)
O2Wi—Cs1—O2W—Cs1iv179.98 (15)O2W—Cs1—O2Wiii—Cs1iii0.03 (11)
O2Wi—Cs1—O2W—Cs1iii94.74 (13)O41—Cs1—O2Wiii—Cs1iii56.56 (9)
O42i—Cs1—O2W—Cs1iv10.4 (3)O1W—Cs1—O41iii—Cs1iii134.37 (10)
O42i—Cs1—O2W—Cs1iii74.9 (2)O1W—Cs1—O41iii—N41iii80.5 (4)
O11ii—Cs1—O2W—Cs1iv68.59 (19)O2W—Cs1—O41iii—Cs1iii52.52 (9)
O11ii—Cs1—O2W—Cs1iii153.85 (8)O2W—Cs1—O41iii—N41iii162.4 (4)
O12ii—Cs1—O2W—Cs1iv36.36 (18)O41—Cs1—O41iii—Cs1iii0.00 (10)
O12ii—Cs1—O2W—Cs1iii121.63 (9)O41—Cs1—O41iii—N41iii145.1 (4)
O2Wiii—Cs1—O2W—Cs1iv85.26 (18)Cs1v—O11—C11—C1135.5 (3)
O2Wiii—Cs1—O2W—Cs1iii0.00 (9)Cs1v—O11—C11—O1243.3 (5)
O41iii—Cs1—O2W—Cs1iv142.2 (2)Cs1v—O12—C11—O1141.3 (4)
O41iii—Cs1—O2W—Cs1iii56.92 (9)Cs1v—O12—C11—C1137.5 (3)
O1W—Cs1—O41—N4179.8 (4)Cs1—O41—N41—O4299.6 (6)
O1W—Cs1—O41—Cs1iii67.23 (13)Cs1—O41—N41—C480.5 (5)
O2W—Cs1—O41—N4193.3 (4)Cs1iii—O41—N41—O4230.2 (7)
O2W—Cs1—O41—Cs1iii53.78 (9)Cs1iii—O41—N41—C4149.7 (3)
O2Wi—Cs1—O41—N41121.7 (4)Cs1iv—O42—N41—O417.8 (8)
O2Wi—Cs1—O41—Cs1iii91.25 (19)Cs1iv—O42—N41—C4172.3 (3)
O42i—Cs1—O41—N4178.6 (4)O41—N41—C4—C54.5 (6)
O42i—Cs1—O41—Cs1iii134.36 (10)O41—N41—C4—C3175.5 (4)
O11ii—Cs1—O41—N4113.5 (4)O42—N41—C4—C5175.5 (4)
O11ii—Cs1—O41—Cs1iii160.58 (7)O42—N41—C4—C34.5 (6)
O12ii—Cs1—O41—N418.1 (4)C11—C1—C2—C3177.4 (4)
O12ii—Cs1—O41—Cs1iii155.17 (11)C2—C1—C6—C50.9 (6)
O2Wiii—Cs1—O41—N41157.2 (4)C6—C1—C2—C30.4 (6)
O2Wiii—Cs1—O41—Cs1iii55.78 (8)C6—C1—C11—O124.4 (6)
O41iii—Cs1—O41—N41147.1 (4)C11—C1—C6—C5176.9 (4)
O41iii—Cs1—O41—Cs1iii0.00 (11)C2—C1—C11—O111.0 (6)
O1W—Cs1—O2Wi—Cs1i145.0 (2)C2—C1—C11—O12177.9 (4)
O2W—Cs1—O2Wi—Cs1i179.97 (17)C6—C1—C11—O11176.8 (4)
O41—Cs1—O2Wi—Cs1i51.0 (3)C1—C2—C3—C40.3 (6)
O1W—Cs1—O42i—N41i63.5 (5)C2—C3—C4—C50.4 (7)
O2W—Cs1—O42i—N41i151.9 (4)C2—C3—C4—N41179.6 (4)
O41—Cs1—O42i—N41i139.1 (5)C3—C4—C5—C60.1 (7)
O1W—Cs1—O11ii—C11ii145.7 (3)N41—C4—C5—C6180.0 (4)
O2W—Cs1—O11ii—C11ii76.1 (3)C4—C5—C6—C10.7 (6)
O41—Cs1—O11ii—C11ii11.7 (3)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1; (iv) x+1, y, z; (v) x+1/2, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O12vi0.821.882.694 (5)174
O1W—H12W···O11vii0.931.812.728 (4)173
O2W—H21W···O1Wviii0.791.992.749 (5)162
O2W—H22W···O11vi0.841.912.753 (5)174
Symmetry codes: (vi) x+1/2, y+1/2, z+1/2; (vii) x1/2, y+1/2, z+1/2; (viii) x+1, y+1, z+1.
Selected bond lengths (Å) top
Cs1—O1W3.126 (3)Cs1—O11ii3.215 (3)
Cs1—O2W3.253 (3)Cs1—O12ii3.338 (4)
Cs1—O413.244 (4)Cs1—O2Wiii3.047 (4)
Cs1—O2Wi3.220 (3)Cs1—O41iii3.310 (4)
Cs1—O42i3.248 (4)
Symmetry codes: (i) x1, y, z; (ii) x+1/2, y+1/2, z+1/2; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H11W···O12iv0.821.882.694 (5)174
O1W—H12W···O11v0.931.812.728 (4)173
O2W—H21W···O1Wvi0.791.992.749 (5)162
O2W—H22W···O11iv0.841.912.753 (5)174
Symmetry codes: (iv) x+1/2, y+1/2, z+1/2; (v) x1/2, y+1/2, z+1/2; (vi) x+1, y+1, z+1.
Acknowledgements top

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

references
References top

Agilent (2012). CrysAlis PRO. Agilent Technologies Ltd, Yarnton, England.

Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.

Bolte, M. (2009). Private communication (refcode NBZOAC011). CCDC, Cambridge, England.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Groth, P. (1980). Acta Chem. Scand. Ser. A, 34, 229–230.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Smith, G. (2013). Acta Cryst. C69. In the press. doi:10.1107/S0108270113028977.

Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Srivastava, H. N. & Speakman, J. C. (1961). J. Chem. Soc. pp. 1151–1163.

Tonogaki, M., Kawata, T., Ohba, S., Iwata, Y. & Shibuya, I. (1993). Acta Cryst. B49, 1031–1039.

Turowska-Tyrk, I., Krygowski, T. M., Gdaniec, M., Häfelinger, G. & Ritter, G. (1988). J. Mol. Struct. 172, 401–412.