organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

A monoclinic polymorph of 1-benzoyl-4-thio­biuret

aDepartment of Chemistry, Chungnam National University, Daejeon 305-764, Republic of Korea
*Correspondence e-mail: skkang@cnu.ac.kr

(Received 18 October 2013; accepted 5 November 2013; online 13 November 2013)

The title compound, C9H9N3O2S, is a monoclinic (C2/c) polymorph of the previously reported triclinic structure [Kang (2013[Kang, S. K. (2013). Acta Cryst. E69, o1327.]). Acta Cryst. E69, o1327]. The mol­ecule is almost planar with an r.m.s. deviation of 0.069 Å from the mean plane of all non-H atoms. The benzoyl and terminal thio­urea fragments adopt a transoid conformation with respect to the central carbonyl O atom. Two intra­molecular N—H⋯O hydrogen bonds are present. In the crystal, N—H⋯O and N—H⋯S inter­actions link the mol­ecules into zigzag chains extending along the c-axis direction.

Related literature

For the biological activity of thia­diazole derivatives, see: Piskala et al. (2004[Piskala, A., Vachalkova, A., Masojidkova, M., Horvathova, K., Ovesna, Z., Paces, V. & Novotny, L. (2004). Parmazie, 59, 756-762.]); Castro et al. (2008[Castro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495-510.]). For the structure and reactivity of thia­diazole derivatives, see: Cho et al. (1996[Cho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170-1174.]). For the structure of a thio­biuret compound, see: Kang et al. (2012[Kang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o395.]) and of the monoclinic polymorph, see: Kang (2013[Kang, S. K. (2013). Acta Cryst. E69, o1327.]).

[Scheme 1]

Experimental

Crystal data
  • C9H9N3O2S

  • Mr = 223.25

  • Monoclinic, C 2/c

  • a = 14.4259 (14) Å

  • b = 6.6145 (6) Å

  • c = 21.722 (2) Å

  • β = 94.166 (3)°

  • V = 2067.2 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.18 × 0.12 × 0.04 mm

Data collection
  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.96, Tmax = 0.99

  • 7756 measured reflections

  • 1973 independent reflections

  • 1293 reflections with I > 2σ(I)

  • Rint = 0.059

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.115

  • S = 1.03

  • 1973 reflections

  • 152 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.21 e Å−3

  • Δρmin = −0.23 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N9—H9⋯O11i 0.81 (3) 2.20 (3) 2.945 (3) 151 (2)
N12—H12⋯O8 0.86 (3) 1.97 (3) 2.661 (3) 136 (2)
N15—H15A⋯S14ii 0.98 (4) 2.41 (4) 3.358 (3) 163 (3)
N15—H15B⋯O11 0.81 (3) 2.06 (3) 2.653 (3) 130 (3)
Symmetry codes: (i) [-x+{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1]; (ii) -x+1, -y, -z+1.

Data collection: SMART (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2002[Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Derivatives of 5-amino-2H-1,2,4-thiadizolin-3-one have arrested the attention on the antibacterial activity, potential carcinogenicity, and kinase inhibitor activity (Piskala et al., 2004; Castro et al., 2008). As a part of our continuous interest in the synthesis of novel potential anti-metabolites of nucleic acid components which would possess cytostatic activity, we have synthesized derivatives of 5-amino-3H-1,3,4-thiadiazol-2-one (Cho et al., 1996). The title compound, 1-benzoyl-4-thiobiuret is an isomer of 1-benzoyl-2-thiobiuret (Kang et al., 2012). This compound is an intermediate for the formation of the thiobiuret which is a good starting material to make 5-amino-2H-1,2,4-thiadizolin-3-one via oxidative ring closure reaction.

In (I), Fig. 1, the dihedral angle between the benzoyl unit (C1 —C7/O8 atoms, r.m.s. deviation = 0.068 Å) and thiobiuret group (N9 — N15 atoms) is 9.67 (13) °. The carbonyl-O8 and O11 atoms are positioned anti to each other, and S14 atom is also positioned anti to carbonyl-O11 atom. The molecular structure is stabilized by two intramolecular N—H···O hydrogen bonds (Fig. 1 and Table 1). In the crystal packing, the intermolecular N—H···O and N—H···S interactions link the molecules into zigzag chains extending along the c axis (Fig. 2).

Related literature top

For the biological activity of thiadiazole derivatives, see: Piskala et al. (2004); Castro et al. (2008). For the structure and reactivity of thiadiazole derivatives, see: Cho et al. (1996). For the structure of a thiobiuret compound, see: Kang et al. (2012) and of the monoclinic polymorph, see: Kang (2013).

Experimental top

Benzoyl chloride (48 ml, 58.1 g, 0.41mole) was added to warm solution of potassium thiocyanate (48.0 g, 0.49mole) in acetone (400 ml). The solution became milky white and yellow when the addition had been completed. The mixture was stirred for 3.5 h at 50 °C and left to cool to room temperature. The filtrate was heated to 55 °C for 5 h with urea (24.0 g, 0.40 mole). And the resulting solution was cooled to room temperature and then placed in an ice bath for several hours. The cold mixture was filtered to give 1-benzoyl-4-thiobiuret as a bright yellow solid. The title compound (I) was obtained after recrystallization from its acetonitrile-methanol (10: 1) solution.

Refinement top

H atoms of the NH and NH2 groups were located in a difference Fourier map and refined freely [refined distances = 0.81 (3) – 0.98 (4) Å]. Other H atoms were positioned geometrically and refined using a riding model, with C—H = 0.93 Å, and with Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) with ellipsoids drawn at the 30% probability level . Two intramolecular N—H···O hydrogen bonds are indicated by dashed lines.
[Figure 2] Fig. 2. Part of the packing diagram of (I), showing molecules linked by intermolecular N—H···O and N—H···S hydrogen bonds (dashed lines).
{[(Phenylformamido)carbonyl]amino}methanethioamide top
Crystal data top
C9H9N3O2SF(000) = 928
Mr = 223.25Dx = 1.435 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 883 reflections
a = 14.4259 (14) Åθ = 2.8–20.7°
b = 6.6145 (6) ŵ = 0.30 mm1
c = 21.722 (2) ÅT = 296 K
β = 94.166 (3)°Block, yellow
V = 2067.2 (3) Å30.18 × 0.12 × 0.04 mm
Z = 8
Data collection top
Bruker SMART CCD area-detector
diffractometer
1293 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.059
ϕ and ω scansθmax = 26.0°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1417
Tmin = 0.96, Tmax = 0.99k = 83
7756 measured reflectionsl = 2614
1973 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0483P)2 + 0.5497P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
1973 reflectionsΔρmax = 0.21 e Å3
152 parametersΔρmin = 0.23 e Å3
Crystal data top
C9H9N3O2SV = 2067.2 (3) Å3
Mr = 223.25Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.4259 (14) ŵ = 0.30 mm1
b = 6.6145 (6) ÅT = 296 K
c = 21.722 (2) Å0.18 × 0.12 × 0.04 mm
β = 94.166 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1973 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1293 reflections with I > 2σ(I)
Tmin = 0.96, Tmax = 0.99Rint = 0.059
7756 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.21 e Å3
1973 reflectionsΔρmin = 0.23 e Å3
152 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.33533 (17)1.0358 (4)0.65485 (12)0.0376 (6)
C20.3931 (2)1.1557 (4)0.69320 (13)0.0488 (7)
H20.45421.11620.70310.059*
C30.3604 (2)1.3340 (4)0.71691 (15)0.0589 (9)
H30.39941.41330.74290.071*
C40.2704 (2)1.3943 (4)0.70214 (14)0.0573 (9)
H40.24921.51590.71740.069*
C50.2120 (2)1.2761 (4)0.66512 (15)0.0563 (8)
H50.15081.31610.65590.068*
C60.24417 (19)1.0959 (4)0.64118 (13)0.0486 (7)
H60.20431.01580.6160.058*
C70.37532 (18)0.8447 (4)0.63138 (13)0.0396 (7)
O80.44757 (13)0.7726 (3)0.65381 (9)0.0561 (6)
N90.32479 (17)0.7544 (3)0.58270 (11)0.0439 (6)
H90.2806 (18)0.812 (4)0.5652 (12)0.039 (8)*
C100.34054 (18)0.5751 (4)0.55260 (13)0.0384 (6)
O110.28343 (12)0.5116 (3)0.51289 (9)0.0472 (5)
N120.42172 (15)0.4788 (3)0.57068 (11)0.0393 (6)
H120.4561 (17)0.535 (4)0.6002 (12)0.037 (8)*
C130.45494 (17)0.3010 (4)0.54659 (13)0.0382 (7)
S140.55856 (5)0.21601 (11)0.57483 (4)0.0510 (3)
N150.40313 (19)0.2107 (4)0.50312 (13)0.0521 (7)
H15A0.425 (2)0.083 (5)0.4869 (15)0.086 (11)*
H15B0.351 (2)0.248 (5)0.4927 (15)0.068 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0416 (16)0.0347 (14)0.0363 (16)0.0008 (11)0.0021 (12)0.0012 (12)
C20.0482 (18)0.0489 (17)0.0488 (19)0.0032 (13)0.0008 (14)0.0116 (15)
C30.071 (2)0.0495 (18)0.056 (2)0.0128 (16)0.0079 (17)0.0189 (16)
C40.076 (2)0.0399 (17)0.057 (2)0.0053 (15)0.0172 (17)0.0096 (15)
C50.058 (2)0.0545 (19)0.057 (2)0.0191 (15)0.0040 (15)0.0054 (16)
C60.0497 (18)0.0467 (17)0.0487 (19)0.0032 (13)0.0009 (14)0.0070 (14)
C70.0392 (17)0.0348 (14)0.0440 (18)0.0001 (11)0.0025 (13)0.0001 (13)
O80.0495 (13)0.0491 (12)0.0667 (15)0.0115 (10)0.0165 (11)0.0113 (10)
N90.0457 (15)0.0362 (13)0.0476 (16)0.0126 (11)0.0111 (12)0.0071 (11)
C100.0351 (15)0.0319 (14)0.0476 (18)0.0022 (11)0.0005 (13)0.0022 (13)
O110.0416 (11)0.0413 (11)0.0568 (13)0.0059 (9)0.0097 (10)0.0098 (10)
N120.0349 (13)0.0330 (12)0.0488 (16)0.0047 (10)0.0054 (11)0.0070 (11)
C130.0353 (15)0.0312 (13)0.0486 (18)0.0004 (11)0.0059 (13)0.0012 (13)
S140.0368 (4)0.0439 (4)0.0713 (6)0.0082 (3)0.0014 (4)0.0077 (4)
N150.0417 (17)0.0421 (15)0.071 (2)0.0092 (12)0.0036 (14)0.0195 (13)
Geometric parameters (Å, º) top
C1—C21.384 (4)C7—O81.216 (3)
C1—C61.385 (3)C7—N91.376 (3)
C1—C71.494 (3)N9—C101.381 (3)
C2—C31.383 (4)N9—H90.81 (3)
C2—H20.93C10—O111.223 (3)
C3—C41.373 (4)C10—N121.366 (3)
C3—H30.93N12—C131.386 (3)
C4—C51.367 (4)N12—H120.86 (3)
C4—H40.93C13—N151.306 (4)
C5—C61.393 (4)C13—S141.671 (3)
C5—H50.93N15—H15A0.98 (4)
C6—H60.93N15—H15B0.81 (3)
C2—C1—C6119.0 (2)O8—C7—N9121.9 (2)
C2—C1—C7117.4 (2)O8—C7—C1122.4 (2)
C6—C1—C7123.6 (2)N9—C7—C1115.7 (2)
C3—C2—C1120.4 (3)C7—N9—C10129.8 (2)
C3—C2—H2119.8C7—N9—H9120.5 (19)
C1—C2—H2119.8C10—N9—H9109.4 (19)
C4—C3—C2120.2 (3)O11—C10—N12124.2 (2)
C4—C3—H3119.9O11—C10—N9120.2 (2)
C2—C3—H3119.9N12—C10—N9115.6 (2)
C5—C4—C3120.2 (3)C10—N12—C13126.9 (2)
C5—C4—H4119.9C10—N12—H12116.6 (17)
C3—C4—H4119.9C13—N12—H12116.5 (17)
C4—C5—C6120.1 (3)N15—C13—N12117.7 (2)
C4—C5—H5120N15—C13—S14124.1 (2)
C6—C5—H5120N12—C13—S14118.1 (2)
C1—C6—C5120.1 (3)C13—N15—H15A118.2 (18)
C1—C6—H6119.9C13—N15—H15B122 (2)
C5—C6—H6119.9H15A—N15—H15B119 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O11i0.81 (3)2.20 (3)2.945 (3)151 (2)
N12—H12···O80.86 (3)1.97 (3)2.661 (3)136 (2)
N15—H15A···S14ii0.98 (4)2.41 (4)3.358 (3)163 (3)
N15—H15B···O110.81 (3)2.06 (3)2.653 (3)130 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N9—H9···O11i0.81 (3)2.20 (3)2.945 (3)151 (2)
N12—H12···O80.86 (3)1.97 (3)2.661 (3)136 (2)
N15—H15A···S14ii0.98 (4)2.41 (4)3.358 (3)163 (3)
N15—H15B···O110.81 (3)2.06 (3)2.653 (3)130 (3)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y, z+1.
 

References

First citationBruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
First citationCastro, A., Encinas, A., Gil, C., Brase, S., Porcal, W., Perez, C., Moreno, F. J. & Martinez, A. (2008). Bioorg. Med. Chem. 16, 495–510.  Web of Science CrossRef PubMed CAS
First citationCho, N. S., Cho, J. J., Ra, D. Y., Moon, J. H., Song, J. S. & Kang, S. K. (1996). Bull. Korean Chem. Soc. 17, 1170–1174.  CAS
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals
First citationKang, S. K. (2013). Acta Cryst. E69, o1327.  CSD CrossRef IUCr Journals
First citationKang, S. K., Cho, N. S. & Jeon, M. K. (2012). Acta Cryst. E68, o395.  Web of Science CSD CrossRef IUCr Journals
First citationPiskala, A., Vachalkova, A., Masojidkova, M., Horvathova, K., Ovesna, Z., Paces, V. & Novotny, L. (2004). Parmazie, 59, 756–762.  CAS
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds