metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m637-m638

catena-Poly[N,N,N′,N′-tetra­methyl­ethylendi­ammonium [[tetra­bromido­antimonate(III)]-μ-bromido] hemihydrate]

aLaboratoire de Génie des Matériaux et Environnement, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, BP 1173, Sfax, Tunisia, and bService commun d'analyse par diffraction des rayons X, Université de Brest, 6 avenue Victor Le Gorgeu, CS 93837, F-29238 Brest Cedex 3, France
*Correspondence e-mail: kharrat_houda@yahoo.fr

(Received 23 September 2013; accepted 21 October 2013; online 6 November 2013)

The asymmetric unit of the title compound {(C6H18N2)2[Sb2Br10]·H2O}n, consists of two tetra­methyl­ethylendi­ammonium cations that are located on centres of inversion, as well as one tetra­methyl­ethylendi­ammonium cation, one water mol­ecule, one distorted octahedral [SbBr6]3−anion and one bisphenoidal [SbBr4] anion in general positions. The [SbBr6]3− and [SbBr4] anions are linked together by two long Sb—Br bonds of 3.2709 (8) and 3.5447 (7) Å into {[Sb2Br10]4−}n chains along [001]. One of the three tetra­methyl­ethylendi­ammonium cations is disordered and was refined using a split model (occupancy ratio 0.58:0.42). The cations and the water mol­ecule are connected to the {[Sb2Br10]4−}n polymeric anions by weak N—H ⋯Br and O(water)—H ⋯Br hydrogen bonding.

Related literature

For crystal structures of related organic anti­monate(III) halogenides, see: Bujak & Angel (2005[Bujak, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237-2246.]); Chaabouni et al. (1997[Chaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1997). J. Chem. Crystallogr. 27, 401-404.], 1998[Chaabouni, S., Kamoun, S. & Jaud, J. (1998). Mater. Res. Bull. 33, 377-388.]). For a similar structure, see: Owczarek et al. (2012[Owczarek, M., Szklarz, P., Jakubas, R. & Miniewicz, A. (2012). Dalton Trans. 41, 7285-7294.]). The bond-valence sum was calculated using the parameters given by Brown & Altermatt (1985[Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.]).

[Scheme 1]

Experimental

Crystal data
  • (C6H18N2)[Sb2Br10]·H2O

  • Mr = 1297.06

  • Orthorhombic, P b c a

  • a = 18.0860 (4) Å

  • b = 19.1755 (4) Å

  • c = 19.4619 (4) Å

  • V = 6749.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 13.45 mm−1

  • T = 298 K

  • 0.43 × 0.30 × 0.19 mm

Data collection
  • Oxford Diffraction Xcalibur Sapphire2 diffractometer

  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]) Tmin = 0.011, Tmax = 0.078

  • 65748 measured reflections

  • 10770 independent reflections

  • 5721 reflections with I > 2σ(I)

  • Rint = 0.096

Refinement
  • R[F2 > 2σ(F2)] = 0.047

  • wR(F2) = 0.089

  • S = 1.01

  • 10770 reflections

  • 290 parameters

  • 15 restraints

  • H-atom parameters constrained

  • Δρmax = 1.92 e Å−3

  • Δρmin = −1.98 e Å−3

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯Br1 0.91 2.59 3.362 (4) 143
N2—H2⋯Br1 0.91 2.56 3.353 (5) 146
N3—H3⋯Br7i 0.91 2.5 3.352 (4) 157
N4—H4⋯Br3 0.91 2.52 3.318 (4) 147
OW—H1W⋯Br4ii 0.83 3.03 3.759 (7) 148
OW—H2W⋯Br3 0.83 2.67 3.449 (7) 157
Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) [x-{\script{1\over 2}}, -y+{\script{3\over 2}}, -z+1].

Data collection: CrysAlis CCD (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009[Oxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.]); data reduction: CrysAlis RED; program(s) used to solve structure: SIR92 (Altomare et al., 1993[Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343-350.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).

Supporting information


Comment top

The structure determination is part of a larger project related to the synthesis, structure and phase transitions in the group of new ferroic crystals of halogenoantimonates (III) with organic cations of various sizes and symmetries (Bujak & Angel, 2005; Chaabouni et al., 1997; Chaabouni et al., 1998). In these compounds the Sb atom shows a tendency toward distorded octahedral coordination with some rather long Sb—X bonds, which is attributed to the aspherical distribution of the lone pair electron (LP) at the Sb(III) cation.

The asymetric unit of the title compound consists of both, [SbBr6]3- and [SbBr4]- anions, a water molecule and three tetramethylethylene diammonium cations of which two are located on centers of inversion (Fig. 1). One of these cations is disordered and was refined using a split model. The anionic substructure is composed of distordered [Sb(1)Br6]3- octahedra that share two trans corners with two others [Sb(2)Br4]- anions that shows a saw-horse coordination. These anions are linked into zig zag {[Sb2Br10]4-}n pseudo chains that elongate along the [001] direction (Fig. 2). Two types of Sb—Br distances are present within these chains: eight short Sb—Br (terminal) distances [2.5405 (7) - 2.9906 (7) Å] and two long Sb—Br (bridging) distances [Sb(2)···Br(5) = 3.2709 (8) Å and Sb(2)···Br(6) = 3.5447 (7) Å], all of them are shorter than the sum of the Van der Waals radii (4.1 Å). A similar structural behavior was already reported by Owczarek (Owczarek et al., 2012). By taking into account the sixth-fold coordination of antimony atom, we have proceeded to calculate the bond-valence sum (BVS) of this metal using the parameters given by Brown (Brown & Altermatt, 1985). The BVS calculation of the Sb(1) and Sb(2) ions confirm the presumed oxidation state of Sb (III). The difference between the longest and the shortest Sb—Br distances in the Sb(1)Br6 and Sb(2)Br6 units amount to 0.3353 (7) Å and 1.0042 (7) Å. Differences were also found in the Br—Sb—Br angles involving Br atoms that are mutually cis configurated. The differences are 13.79 (2)° for Sb(1)Br6 and 23.50 (2)° for Sb(2)Br6. Taking into account the differences described above the lone pair electron at the Sb(III) cations may be considered as stereochemical active. The [C6H18N2]2+ cations are located between the inorganic chains with their ammonium group facing the oppositely charged {[Sb2Br10]4-}n polyanions. In the crystal structure the cations, anions and water molecules are linked by weak intermolecular N—H···Br and O(W)—H···Br hydrogen bonding (Table 1).

Related literature top

For crystal structures of related organic antimonate(III) halogenides, see: Bujak & Angel (2005); Chaabouni et al. (1997, 1998). For a similar structure, see: Owczarek et al. (2012). The bond-valence sum was calculated using the parameters given by Brown & Altermatt (1985).

Experimental top

Crystals of the title compound were obtained by dissolving a stoichiometric mixture of antimony (III) oxide Sb2O3 (5 g, 17 mmol) and N, N, N', N' - tetramethylethylendiamine (C6H16N2) (5 ml, 34 mmol) in 100 ml of a solution of HBr (24%) . The resulting aqueous solution was then kept at room temperature. After several weeks prismatic shaped single crystals of the title compound were obtained by slow evaporation of the solvent at room temperature. They were washed with diethyl ether and dried for 4 h over CaCl2.

Refinement top

All C-H and N-H H atoms were positioned with idealized geometry and refined with Uiso(H) = 1.2 Ueq(C,N) (1.5 for methyl H atoms) using a riding model with C-H = 0.96 Å for methyl, C-H = 0.97 Å for methylene and N—H = 0.91 Å for ammonium H atoms. The H atoms of the water molecules were located in difference map, their bond lengths were set to ideal values and finally they were refined using a riding model with Uiso(H) = 1.5 Ueq(O). The tetramethylethylendiammonium cation in a general position is disordered and was refined using a split model with occupancy ratio 58:42 using restraints. The O atom of the water molecule shows slightly enlarged anisotropic displacement parameters indicating for some disordering that cannot be resolved successfully.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2009); cell refinement: CrysAlis RED (Oxford Diffraction, 2009); data reduction: CrysAlis RED (Oxford Diffraction, 2009); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: WinGX (Farrugia, 2012) and publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) x + 1, -y + 2, -z + 1; (ii) -x + 1, -y + 1, -z + 1.
[Figure 2] Fig. 2. View of the anionic substructure of the title compound with labelling and displacement ellipsoids drawn at the 30% probability level. Symmetry codes: (i) -x + 1, y + 0.5, -z + 1.5; (ii) -x + 1, -y + 1, -z + 1.
catena-Poly[N,N,N',N'-tetramethylethylendiammonium [[tetrabromidoantimonate(III)]-µ-bromido] hemihydrate] top
Crystal data top
(C6H18N2)[Sb2Br10]·H2OZ = 8
Mr = 1297.06F(000) = 4784
Orthorhombic, PbcaDx = 2.553 Mg m3
Hall symbol: -P 2ac 2abMo Kα radiation, λ = 0.71073 Å
a = 18.0860 (4) ŵ = 13.45 mm1
b = 19.1755 (4) ÅT = 298 K
c = 19.4619 (4) ÅPrismatic, axis [1 0 0], yellow
V = 6749.5 (2) Å30.43 × 0.30 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
10770 independent reflections
Radiation source: sealed X-ray tube5721 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.096
Detector resolution: 8.3622 pixels mm-1θmax = 31.6°, θmin = 3.1°
ω scansh = 2526
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
k = 2826
Tmin = 0.011, Tmax = 0.078l = 2628
65748 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.033P)2 + 2.8328P]
where P = (Fo2 + 2Fc2)/3
10770 reflections(Δ/σ)max = 0.001
290 parametersΔρmax = 1.92 e Å3
15 restraintsΔρmin = 1.98 e Å3
Crystal data top
(C6H18N2)[Sb2Br10]·H2OV = 6749.5 (2) Å3
Mr = 1297.06Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 18.0860 (4) ŵ = 13.45 mm1
b = 19.1755 (4) ÅT = 298 K
c = 19.4619 (4) Å0.43 × 0.30 × 0.19 mm
Data collection top
Oxford Diffraction Xcalibur Sapphire2
diffractometer
10770 independent reflections
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2009)
5721 reflections with I > 2σ(I)
Tmin = 0.011, Tmax = 0.078Rint = 0.096
65748 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04715 restraints
wR(F2) = 0.089H-atom parameters constrained
S = 1.01Δρmax = 1.92 e Å3
10770 reflectionsΔρmin = 1.98 e Å3
290 parameters
Special details top

Experimental. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. CrysAlis RED (Oxford Diffraction, 2009)

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Sb10.626802 (19)0.755771 (18)0.520272 (17)0.02825 (9)
Sb20.351898 (18)0.442769 (18)0.734954 (18)0.02673 (9)
Br10.54458 (4)0.65129 (3)0.59658 (3)0.04546 (16)
Br20.70124 (4)0.85628 (3)0.45458 (4)0.05252 (18)
Br30.48610 (3)0.81097 (4)0.46063 (3)0.04992 (18)
Br40.75101 (4)0.70887 (4)0.57645 (3)0.0591 (2)
Br50.59238 (4)0.83959 (4)0.64163 (4)0.0646 (2)
Br60.64208 (4)0.66424 (3)0.41346 (3)0.04907 (17)
Br70.50362 (3)0.48013 (3)0.70652 (3)0.03898 (15)
Br80.21218 (3)0.41314 (4)0.76132 (4)0.0591 (2)
Br90.35219 (3)0.53266 (3)0.83085 (3)0.04420 (16)
Br100.31213 (3)0.53122 (3)0.64461 (3)0.04336 (16)
N10.6426 (2)0.6779 (3)0.7410 (2)0.0377 (12)
H10.62590.69110.69890.045*
N20.4676 (3)0.7303 (3)0.7326 (3)0.0423 (12)
H20.49080.72870.69110.051*
C10.6693 (4)0.6051 (3)0.7355 (4)0.061 (2)
H1A0.62910.57530.72220.091*
H1B0.68830.59020.77910.091*
H1C0.70770.60260.70150.091*
C20.7034 (4)0.7249 (4)0.7603 (4)0.065 (2)
H2A0.68510.77180.76330.098*
H2B0.74160.72250.72620.098*
H2C0.7230.7110.8040.098*
C30.5793 (4)0.6819 (4)0.7901 (3)0.066 (2)
H3A0.55440.63720.78830.08*0.58
H3B0.60040.68590.83570.08*0.58
H3C0.59080.64970.8270.08*0.42
H3D0.58120.72820.80990.08*0.42
C4A0.5236 (6)0.7339 (6)0.7848 (5)0.047 (3)0.58
H4A0.54860.77830.77930.056*0.58
H4B0.49840.73560.82880.056*0.58
C5A0.4178 (12)0.6752 (8)0.7351 (13)0.071 (6)0.58
H5A0.38470.67810.69660.107*0.58
H5B0.38990.67760.7770.107*0.58
H5C0.44430.63190.73330.107*0.58
C6A0.4223 (7)0.8015 (6)0.7363 (7)0.058 (4)0.58
H6A0.45590.84020.73450.087*0.58
H6B0.39470.80320.77840.087*0.58
H6C0.38880.80410.69810.087*0.58
C4B0.5103 (7)0.6709 (6)0.7744 (6)0.031 (3)0.42
H4C0.48350.66260.81670.037*0.42
H4D0.50790.62820.74760.037*0.42
C5B0.3998 (18)0.6842 (15)0.7092 (19)0.080 (10)0.42
H5E0.4170.64680.68070.12*0.42
H5F0.36560.71250.68380.12*0.42
H5G0.37560.66540.7490.12*0.42
C6B0.4477 (2)0.7858 (2)0.7706 (2)0.092 (9)0.42
H6E0.49110.81120.7840.138*0.42
H6F0.42190.77020.81090.138*0.42
H6G0.41590.81540.74410.138*0.42
N30.4164 (2)0.5295 (2)0.4486 (2)0.0347 (11)
H30.43770.51330.40940.042*
C70.4592 (3)0.4993 (3)0.5075 (3)0.0318 (13)
H7A0.44360.45150.51540.038*
H7B0.44920.52590.54890.038*
C80.3390 (3)0.5050 (4)0.4484 (3)0.0513 (18)
H8A0.33810.45510.45240.077*
H8B0.31560.51870.40620.077*
H8C0.3130.52530.48650.077*
C90.4198 (4)0.6065 (3)0.4455 (4)0.0596 (19)
H9A0.3890.62290.40870.089*
H9B0.46990.62090.43760.089*
H9C0.40270.62560.48820.089*
N40.4240 (2)0.9494 (2)0.5451 (2)0.0348 (11)
H40.44630.90710.54050.042*
C100.4578 (3)0.9977 (3)0.4958 (3)0.0373 (14)
H10A0.43661.04370.5020.045*
H10B0.44640.98240.44950.045*
C110.4316 (4)0.9720 (4)0.6179 (3)0.064 (2)
H11A0.40580.93990.64720.095*
H11B0.4111.01780.62320.095*
H11C0.4830.97280.63020.095*
C120.3444 (3)0.9408 (4)0.5294 (4)0.061 (2)
H12A0.32310.90760.56050.091*
H12B0.33890.92430.48310.091*
H12C0.31980.98480.53430.091*
OW0.3596 (4)0.7703 (5)0.5870 (4)0.159 (3)
H1W0.32190.76770.5630.238*
H2W0.39890.77570.5660.238*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sb10.0396 (2)0.02096 (19)0.02414 (17)0.00123 (16)0.00398 (16)0.00193 (15)
Sb20.02741 (18)0.02436 (19)0.02841 (18)0.00197 (15)0.00144 (15)0.00237 (16)
Br10.0683 (4)0.0336 (3)0.0345 (3)0.0137 (3)0.0033 (3)0.0023 (3)
Br20.0636 (4)0.0405 (4)0.0535 (4)0.0205 (3)0.0045 (3)0.0098 (3)
Br30.0512 (4)0.0541 (4)0.0444 (4)0.0098 (3)0.0033 (3)0.0109 (3)
Br40.0503 (4)0.0776 (5)0.0493 (4)0.0205 (4)0.0013 (3)0.0034 (4)
Br50.0788 (5)0.0500 (4)0.0650 (5)0.0101 (4)0.0015 (4)0.0271 (4)
Br60.0785 (5)0.0318 (3)0.0369 (3)0.0005 (3)0.0089 (3)0.0031 (3)
Br70.0333 (3)0.0463 (4)0.0373 (3)0.0007 (3)0.0038 (2)0.0046 (3)
Br80.0324 (3)0.0653 (5)0.0795 (5)0.0106 (3)0.0040 (3)0.0040 (4)
Br90.0542 (4)0.0467 (4)0.0318 (3)0.0074 (3)0.0061 (3)0.0070 (3)
Br100.0519 (4)0.0484 (4)0.0298 (3)0.0162 (3)0.0033 (3)0.0071 (3)
N10.036 (3)0.050 (3)0.027 (2)0.008 (2)0.004 (2)0.001 (2)
N20.033 (3)0.048 (3)0.046 (3)0.008 (2)0.003 (2)0.002 (3)
C10.060 (5)0.045 (4)0.078 (5)0.021 (3)0.009 (4)0.005 (4)
C20.067 (5)0.068 (5)0.060 (5)0.019 (4)0.001 (4)0.008 (4)
C30.061 (5)0.100 (7)0.038 (4)0.028 (4)0.011 (3)0.012 (4)
C4A0.048 (7)0.052 (8)0.039 (6)0.019 (6)0.002 (5)0.007 (6)
C5A0.054 (13)0.050 (9)0.11 (2)0.011 (8)0.003 (10)0.008 (11)
C6A0.042 (7)0.041 (7)0.092 (10)0.021 (6)0.007 (7)0.008 (7)
C4B0.050 (9)0.015 (7)0.028 (7)0.004 (6)0.002 (6)0.008 (6)
C5B0.041 (15)0.12 (2)0.07 (2)0.020 (13)0.018 (11)0.002 (16)
C6B0.056 (14)0.034 (11)0.19 (3)0.023 (10)0.029 (15)0.003 (15)
N30.036 (3)0.039 (3)0.029 (3)0.001 (2)0.003 (2)0.006 (2)
C70.036 (3)0.034 (3)0.025 (3)0.004 (3)0.004 (2)0.003 (3)
C80.031 (3)0.073 (5)0.050 (4)0.002 (3)0.003 (3)0.002 (4)
C90.073 (5)0.037 (4)0.068 (5)0.009 (3)0.012 (4)0.005 (4)
N40.038 (3)0.028 (3)0.039 (3)0.008 (2)0.006 (2)0.001 (2)
C100.038 (3)0.045 (4)0.029 (3)0.002 (3)0.003 (3)0.000 (3)
C110.062 (4)0.100 (6)0.028 (3)0.003 (4)0.001 (3)0.006 (4)
C120.050 (4)0.065 (5)0.067 (5)0.010 (4)0.002 (3)0.006 (4)
OW0.128 (6)0.243 (10)0.105 (5)0.005 (6)0.008 (5)0.028 (6)
Geometric parameters (Å, º) top
Sb1—Br12.9035 (7)C6A—H6A0.96
Sb1—Br22.6762 (7)C6A—H6B0.96
Sb1—Br32.9906 (7)C6A—H6C0.96
Sb1—Br42.6553 (7)C4B—H4C0.97
Sb1—Br52.9240 (8)C4B—H4D0.97
Sb1—Br62.7347 (7)C5B—H5E0.96
Br5—Sb2i3.2709 (8)C5B—H5F0.96
Sb2—Br6ii3.5447 (7)C5B—H5G0.96
Sb2—Br72.8895 (6)C6B—H6E0.96
Sb2—Br82.6403 (7)C6B—H6F0.96
Sb2—Br92.5405 (7)C6B—H6G0.96
Sb2—Br102.5466 (7)N3—C81.477 (7)
N1—C21.471 (7)N3—C91.479 (7)
N1—C11.480 (7)N3—C71.500 (6)
N1—C31.493 (8)N3—H30.91
N1—H10.91C7—C7ii1.503 (10)
N2—C6B1.345 (7)C7—H7A0.97
N2—C5A1.389 (19)C7—H7B0.97
N2—C4A1.437 (10)C8—H8A0.96
N2—C5B1.58 (2)C8—H8B0.96
N2—C6A1.596 (11)C8—H8C0.96
N2—C4B1.598 (13)C9—H9A0.96
N2—H20.91C9—H9B0.96
C1—H1A0.96C9—H9C0.96
C1—H1B0.96N4—C101.467 (7)
C1—H1C0.96N4—C121.480 (7)
C2—H2A0.96N4—C111.487 (7)
C2—H2B0.96N4—H40.91
C2—H2C0.96C10—C10iii1.537 (10)
C3—C4B1.302 (13)C10—H10A0.97
C3—C4A1.422 (11)C10—H10B0.97
C3—H3A0.97C11—H11A0.96
C3—H3B0.97C11—H11B0.96
C3—H3C0.97C11—H11C0.96
C3—H3D0.97C12—H12A0.96
C4A—H4A0.97C12—H12B0.96
C4A—H4B0.97C12—H12C0.96
C5A—H5A0.96OW—H1W0.828
C5A—H5B0.96OW—H2W0.8264
C5A—H5C0.96
Br1—Sb1—Br2177.35 (2)H3A—C3—H3D147.2
Br1—Sb1—Br390.40 (2)H3B—C3—H3D63.1
Br1—Sb1—Br489.37 (2)H3C—C3—H3D106.3
Br1—Sb1—Br581.78 (2)C3—C4A—N2121.0 (9)
Br1—Sb1—Br689.87 (2)C3—C4A—H4A107.1
Br2—Sb1—Br389.30 (2)N2—C4A—H4A107.1
Br2—Sb1—Br490.86 (3)C3—C4A—H4B107.1
Br2—Sb1—Br595.57 (2)N2—C4A—H4B107.1
Br2—Sb1—Br692.77 (2)H4A—C4A—H4B106.8
Br3—Sb1—Br4178.37 (2)N2—C5A—H5A109.5
Br3—Sb1—Br586.43 (2)N2—C5A—H5B109.5
Br3—Sb1—Br691.03 (2)H5A—C5A—H5B109.5
Br4—Sb1—Br591.93 (2)N2—C5A—H5C109.5
Br4—Sb1—Br690.58 (2)H5A—C5A—H5C109.5
Br5—Sb1—Br6171.25 (2)H5B—C5A—H5C109.5
Br5iv—Sb2—Br6ii103.81 (2)N2—C6A—H6A109.5
Br5iv—Sb2—Br789.89 (2)N2—C6A—H6B109.5
Br5iv—Sb2—Br891.26 (2)H6A—C6A—H6B109.5
Br5iv—Sb2—Br982.55 (2)N2—C6A—H6C109.5
Br5iv—Sb2—Br10175.44 (2)H6A—C6A—H6C109.5
Br6ii—Sb2—Br787.61 (2)H6B—C6A—H6C109.5
Br6ii—Sb2—Br893.62 (2)C3—C4B—N2117.8 (10)
Br6ii—Sb2—Br9172.43 (2)C3—C4B—H4C107.9
Br6ii—Sb2—Br1080.31 (2)N2—C4B—H4C107.9
Br7—Sb2—Br8178.07 (3)C3—C4B—H4D107.9
Br7—Sb2—Br988.31 (2)N2—C4B—H4D107.9
Br7—Sb2—Br1088.33 (2)H4C—C4B—H4D107.2
Br8—Sb2—Br990.30 (2)N2—C5B—H5E109.5
Br8—Sb2—Br1090.41 (2)N2—C5B—H5F109.5
Br9—Sb2—Br1093.20 (2)H5E—C5B—H5F109.5
Sb2i—Br5—Sb1149.32 (3)N2—C5B—H5G109.5
Sb2ii—Br6—Sb1173.75 (3)H5E—C5B—H5G109.5
C2—N1—C1110.7 (5)H5F—C5B—H5G109.5
C2—N1—C3112.2 (5)N2—C6B—H6E109.5
C1—N1—C3110.2 (5)N2—C6B—H6F109.5
C2—N1—H1107.9H6E—C6B—H6F109.5
C1—N1—H1107.9N2—C6B—H6G109.5
C3—N1—H1107.9H6E—C6B—H6G109.5
C6B—N2—C5A114.1 (12)H6F—C6B—H6G109.5
C6B—N2—C4A76.2 (5)C8—N3—C9110.9 (5)
C5A—N2—C4A118.1 (10)C8—N3—C7111.6 (4)
C6B—N2—C5B113.2 (15)C9—N3—C7113.3 (4)
C5A—N2—C5B23.1 (17)C8—N3—H3106.9
C4A—N2—C5B141.2 (13)C9—N3—H3106.9
C6B—N2—C6A32.9 (5)C7—N3—H3106.9
C5A—N2—C6A108.4 (10)N3—C7—C7ii110.5 (5)
C4A—N2—C6A106.8 (7)N3—C7—H7A109.6
C5B—N2—C6A95.3 (13)C7ii—C7—H7A109.6
C6B—N2—C4B114.4 (6)N3—C7—H7B109.6
C5A—N2—C4B75.8 (9)C7ii—C7—H7B109.6
C4A—N2—C4B48.3 (6)H7A—C7—H7B108.1
C5B—N2—C4B97.1 (11)N3—C8—H8A109.5
C6A—N2—C4B146.8 (8)N3—C8—H8B109.5
C6B—N2—H2129.6H8A—C8—H8B109.5
C5A—N2—H2107.7N3—C8—H8C109.5
C4A—N2—H2107.7H8A—C8—H8C109.5
C5B—N2—H294.8H8B—C8—H8C109.5
C6A—N2—H2107.7N3—C9—H9A109.5
C4B—N2—H2101.8N3—C9—H9B109.5
N1—C1—H1A109.5H9A—C9—H9B109.5
N1—C1—H1B109.5N3—C9—H9C109.5
H1A—C1—H1B109.5H9A—C9—H9C109.5
N1—C1—H1C109.5H9B—C9—H9C109.5
H1A—C1—H1C109.5C10—N4—C12109.9 (4)
H1B—C1—H1C109.5C10—N4—C11113.6 (5)
N1—C2—H2A109.5C12—N4—C11108.7 (5)
N1—C2—H2B109.5C10—N4—H4108.2
H2A—C2—H2B109.5C12—N4—H4108.2
N1—C2—H2C109.5C11—N4—H4108.2
H2A—C2—H2C109.5N4—C10—C10iii112.4 (6)
H2B—C2—H2C109.5N4—C10—H10A109.1
C4B—C3—C4A54.4 (7)C10iii—C10—H10A109.1
C4B—C3—N1125.2 (8)N4—C10—H10B109.1
C4A—C3—N1122.3 (7)C10iii—C10—H10B109.1
C4B—C3—H3A53.3H10A—C10—H10B107.9
C4A—C3—H3A106.8N4—C11—H11A109.5
N1—C3—H3A106.8N4—C11—H11B109.5
C4B—C3—H3B127.2H11A—C11—H11B109.5
C4A—C3—H3B106.8N4—C11—H11C109.5
N1—C3—H3B106.8H11A—C11—H11C109.5
H3A—C3—H3B106.6H11B—C11—H11C109.5
C4B—C3—H3C106N4—C12—H12A109.5
C4A—C3—H3C130.7N4—C12—H12B109.5
N1—C3—H3C106H12A—C12—H12B109.5
H3A—C3—H3C64.1N4—C12—H12C109.5
H3B—C3—H3C44.6H12A—C12—H12C109.5
C4B—C3—H3D106H12B—C12—H12C109.5
C4A—C3—H3D53.9H1W—OW—H2W115.9
N1—C3—H3D106
Symmetry codes: (i) x+1, y+1/2, z+3/2; (ii) x+1, y+1, z+1; (iii) x+1, y+2, z+1; (iv) x+1, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.912.593.362 (4)143
N2—H2···Br10.912.563.353 (5)146
N3—H3···Br7ii0.912.53.352 (4)157
N4—H4···Br30.912.523.318 (4)147
OW—H1W···Br4v0.833.033.759 (7)148
OW—H2W···Br30.832.673.449 (7)157
Symmetry codes: (ii) x+1, y+1, z+1; (v) x1/2, y+3/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···Br10.912.593.362 (4)143
N2—H2···Br10.912.563.353 (5)146.4
N3—H3···Br7i0.912.53.352 (4)157
N4—H4···Br30.912.523.318 (4)147.2
OW—H1W···Br4ii0.833.033.759 (7)147.5
OW—H2W···Br30.832.673.449 (7)156.7
Symmetry codes: (i) x+1, y+1, z+1; (ii) x1/2, y+3/2, z+1.
 

Acknowledgements

The authors gratefully acknowledge the support of the Tunisian Ministry of Higher Education and Scientific Research.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBujak, M. & Angel, R. J. (2005). J. Solid State Chem. 178, 2237–2246.  Web of Science CSD CrossRef CAS Google Scholar
First citationChaabouni, S., Kamoun, S., Daoud, A. & Jouini, T. (1997). J. Chem. Crystallogr. 27, 401–404.  CrossRef CAS Google Scholar
First citationChaabouni, S., Kamoun, S. & Jaud, J. (1998). Mater. Res. Bull. 33, 377–388.  Web of Science CrossRef CAS Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationOwczarek, M., Szklarz, P., Jakubas, R. & Miniewicz, A. (2012). Dalton Trans. 41, 7285–7294.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationOxford Diffraction (2009). CrystAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages m637-m638
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds