[Journal logo]

Volume 69 
Part 12 
Page m639  
December 2013  

Received 18 September 2013
Accepted 30 October 2013
Online 6 November 2013

Key indicators
Single-crystal X-ray study
T = 298 K
Mean [sigma](C-C) = 0.008 Å
R = 0.049
wR = 0.102
Data-to-parameter ratio = 17.5
Details
Open access

(3-Methyl­benzo­nitrile-[kappa]N)tetra­kis([mu]-N-phenyl­acetamidato)-[kappa]4N:O;[kappa]4O:N-di­rhodium(II)(Rh-Rh)

aDepartment of Chemistry, East Tennessee State University, PO Box 70695, Johnson City, TN 37614, USA
Correspondence e-mail: eaglec@etsu.edu

In the title compound, [Rh2(C8H8NO)4(C8H7N)], the four acetamidate ligands bridging the dirhodium core are arranged in a 2,2-trans manner. One RhII atom is five-coordinate, in a distorted pyramidal geometry, while the other is six-coord­in­ate, with a disorted octa­hedral geometry. For the six-coord­inate RhII atom, the axial nitrile ligand shows a non-linear Rh-nitrile coordination with an Rh-N-C bond angle of 166.4 (4)° and a nitrile N-C bond length of 1.138 (6) Å. Each unique RhII atom is coordinated by a trans pair of N atoms and a trans pair of O atoms from the four acetamide ligands. The Neq-Rh-Rh-Oeq torsion angles on the acetamide bridge varies between 12.55 (11) and 14.04 (8)°. In the crystal, the 3-methyl­benzo­nitrile ring shows a [pi]-[pi] inter­action with an inversion-related equivalent [inter­planar spacing = 3.360 (6) Å]. A phenyl ring on one of the acetamide ligands also has a face-to-face [pi]-[pi] inter­action with an inversion-related equivalent [inter­planar spacing = 3.416 (5) Å].

Related literature

For the synthesis and structures of three related compounds, see Eagle et al. (2000[Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90-94.], 2012[Eagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.], 2013[Eagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013). Acta Cryst. E69, m329.]).

[Scheme 1]

Experimental

Crystal data
  • [Rh2(C8H8NO)4(C8H7N)]

  • Mr = 859.58

  • Triclinic, [P \overline 1]

  • a = 11.7109 (13) Å

  • b = 13.0181 (14) Å

  • c = 13.3980 (14) Å

  • [alpha] = 72.337 (5)°

  • [beta] = 66.780 (5)°

  • [gamma] = 82.742 (6)°

  • V = 1788.6 (3) Å3

  • Z = 2

  • Mo K[alpha] radiation

  • [mu] = 0.97 mm-1

  • T = 298 K

  • 0.16 × 0.08 × 0.07 mm

Data collection
  • Rigaku XtaLAB mini diffractometer

  • Absorption correction: multi-scan (REQAB; Rigaku, 1998[Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.]) Tmin = 0.774, Tmax = 0.934

  • 18460 measured reflections

  • 8156 independent reflections

  • 5635 reflections with I > 2[sigma](I)

  • Rint = 0.065

Refinement
  • R[F2 > 2[sigma](F2)] = 0.049

  • wR(F2) = 0.102

  • S = 1.04

  • 8156 reflections

  • 465 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.73 e Å-3

  • [Delta][rho]min = -0.86 e Å-3

Data collection: CrystalClear-SM Auto (Rigaku, 2011[Rigaku (2011). CrystalClear-SM Auto. Rigaku Corporation, Tokyo, Japan.]); cell refinement: CrystalClear-SM Auto; data reduction: CrystalClear-SM Auto; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]) and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: CrystalStructure (Rigaku, 2010[Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.]); software used to prepare material for publication: CrystalStructure and Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]).


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2497 ).


Acknowledgements

We thank Dr Lee Daniels of Rigaku Americas for training on the Rigaku XtaLAB diffractometer and his extended help in the completion of the structural determination. Support was provided by a Start Up Grant from ETSU. We thank Johnson Matthey for their generous loan of rhodium trichloride. We also thank Dr Scott J. Kirkby for useful conversations during the writing of this manuscript.

References

Eagle, C. T., Farrar, D. G., Holder, G. N., Pennington, W. T. & Bailey, R. D. (2000). J. Organomet. Chem. 596, 90-94.  [CrossRef] [ChemPort]
Eagle, C. T., Kpogo, K. K., Zink, L. C. & Smith, A. E. (2012). Acta Cryst. E68, m877.  [CSD] [CrossRef] [IUCr Journals]
Eagle, C. T., Quarshie, F., Ketron, M. E. & Atem-Tambe, N. (2013). Acta Cryst. E69, m329.  [CSD] [CrossRef] [IUCr Journals]
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Rigaku (1998). REQAB. Rigaku Corporation, Tokyo, Japan.
Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
Rigaku (2011). CrystalClear-SM Auto. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]


Acta Cryst (2013). E69, m639  [ doi:10.1107/S1600536813029838 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.