supplementary materials


qk2061 scheme

Acta Cryst. (2013). E69, o1741-o1742    [ doi:10.1107/S1600536813029383 ]

N-Benzyl-2-hy­droxy­ethanaminium cyanurate

C. A. Contreras-Espejel, M. A. García-Eleno, E. Santacruz-Juárez, R. Reyes-Martínez and D. Morales-Morales

Abstract top

In the cation of the title compound C9H14ON+·C3H2O3N3-, the benzyl­amine C-N bond subtends a dihedral angle of 78.3 (2)° with the phenyl ring. The cyanurate anion is in the usual keto-form and shows an r.m.s. deviation from planarity of 0.010 Å. In the crystal, the cyanurate anions form N-H...O hydrogen-bonded zigzag ribbons along [001]. These ribbons are crosslinked by the organocations via O-H...N and N-H...O hydrogen bonds, forming bilayers parallel to (010) which are held together along [010] by slipped [pi]-[pi] inter­actions between pairs of cyanurate anions [shortest contact distances C...C = 3.479 (2), O...N = 3.400 (2); centroid-centroid distance= 4.5946 (9) Å] and between cyanurate and phenyl rings [centroid-centroid distance = 3.7924 (12) Å, ring-ring angle = 11.99 (10)°].

Comment top

Cyanuric acid and trithiocyanuric acid are based on planar six-membered rings and are used as building blocks of supramolecular assemblies held together via a variety of intermolecular hydrogen bonds. In undissociated form they contain in the solid state three hydrogen donors (N—H) and three hydrogen acceptors (O, S). In this form cyanuric acid generates adducts with pyridine (Sivashankar, 2000), 4,4'-bipyridyl (Ranganathan et al., 2000) and melamine (Prior et al., 2013). And both, cyanuric and trithiocyanuric acid are found in mono- and di-anionic form in various organic salts (Krepps et al., 2001; Barszcz et al., 2006), particularly as ammonium salts such as tripropylammonium (Yang, 2010), 1-dimethylammonio-8-dimethylaminonaphthalene (Nichol & Clegg, 2006), and guanidinium (El-Gamel et al., 2008). Here we report the synthesis and crystal structure of the salt N-benzyl-2-hydroxyethanaminium cyanurate, [C9H14ON]+[C3H2O3N3]-.

The asymmetric unit of the title compound is formed by one molecule of the cyanurate anion and one molecule of the N-benzyl-2-hydroxyethanaminium cation (Fig. 1). The cyanurate anions are mutually linked via two pairs of centrosymmetric hydrogen bonds (N3—H3···O2i and its inverse, N5—H5···O4ii and its inverse) to form zig-zag ribbons along [001], a motif frequently encountered in cyanuric acid, cyanurate salts, and cyanurate metal complexes (Falvello et al., 1997; Sivashankar, 2000; Hou et al., 2011). Each N-benzyl-2-hydroxyethanaminium cation links two adjacent cyanurate zig-zag ribbons via the hydrogen bonds O1—H1···N1 and N2—H2A···O2iii two form a 2-dimensional infinite bilayer parallel to (010) (Fig. 2). This bilayer is reinforced by the intercationic hydrogen bond N2—H2B···O1iii and by an inclined π-π interaction between the cyanurate and the phenyl ring (CgCg = 3.7924 (12) Å, ring-ring angle = 11.99 (10)°). Adjacent bilayers are held together along [010] by slipped π-π interactions between centrosymmetric pairs of cyanurate anions (shortest contact distances C4···C4(1-x,-y,1-z) = 3.479 (2) Å, O1···N3(1-x,-y,1-z) = 3.400 (2) Å; CgCg = 4.5946 (9) Å). The incorporation of the N-benzyl-2-hydroxyethanaminium cation into the bilayer determines the conformation of the cation, which shows torsion angles of C10—C9—C15—N2 = 78.3 (2), C9—C15—N2—C8 = -168.71 (14), and C15—N2—C8—O1 = 59.3 (2)° for side chain atoms. The cyanurate ion is almost planar (r.m.s. and maximum deviations from planarity are 0.010 Å and 0.037 (15) Å (N5)).

Related literature top

For adducts of cyanuric acid, see: Sivashankar (2000); Ranganathan et al. (2000); Prior et al. (2013). For cyanurate and trithiocyanurate salts, see: Krepps et al. (2001); Barszcz et al. (2006); Yang (2010); Nichol & Clegg (2006); Hou & Yang (2011); El-Gamel et al. (2008). For a common hydrogen-bond motif in cyanurates and trithiocyanurates, see: Falvello et al. (1997); Sivashankar (2000); Hou & Yang (2011).

Experimental top

A mixture of triethylamine (1.5 g, 14.8 mmol) and 2-(benzylamino)ethanol (2 g, 13.5 mmol) was added slowly to methanolic solution of cyanuric chloride (0.83 g, 4.4 mmol) in an ice bath under stirring. The resulting solution was set to reflux for three days, and then allowed to cool down until the formation of a crystalline material was observed. The colourless crystalline material was filtered and washed with acetone and cold methanol.

Refinement top

C-bonded H atoms were included in calculated position (C—H = 0.93 Å for aromatic H, and C—H = 0.97 Å for methylene H), and refined using a riding model with Uiso(H) = 1.2 × Ueq of the carrier atoms. H atoms on N and O were located in a Fourier map and refined isotropically with Uiso(H) = 1.2 × Ueq(N) or 1.5 × Ueq(O).

Computing details top

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. Asymmetric unit of the title compound with ellipsoids drawn at 40% probability.
[Figure 2] Fig. 2. Hydrogen bond pattern in crystal structure of the title compound. Hydrogen bonds are shown as dashed lines.
N-Benzyl-2-hydroxyethanaminium cyanurate top
Crystal data top
C9H14NO+·C3H2N3O3F(000) = 1184
Mr = 280.29Dx = 1.386 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.0855 (3) ÅCell parameters from 4964 reflections
b = 14.0236 (2) Åθ = 2.5–26.0°
c = 10.0626 (1) ŵ = 0.11 mm1
β = 115.474 (1)°T = 298 K
V = 2686.18 (6) Å3Needle, colourless
Z = 80.47 × 0.12 × 0.09 mm
Data collection top
Bruker SMART APEX CCD
diffractometer
2753 independent reflections
Radiation source: fine-focus sealed tube1913 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
Detector resolution: 8.333 pixels mm-1θmax = 26.4°, θmin = 1.8°
ω–scansh = 2626
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
k = 1716
Tmin = 0.68, Tmax = 0.75l = 1212
16557 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0505P)2 + 1.1375P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
2753 reflectionsΔρmax = 0.20 e Å3
197 parametersΔρmin = 0.17 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0026 (3)
Crystal data top
C9H14NO+·C3H2N3O3V = 2686.18 (6) Å3
Mr = 280.29Z = 8
Monoclinic, C2/cMo Kα radiation
a = 21.0855 (3) ŵ = 0.11 mm1
b = 14.0236 (2) ÅT = 298 K
c = 10.0626 (1) Å0.47 × 0.12 × 0.09 mm
β = 115.474 (1)°
Data collection top
Bruker SMART APEX CCD
diffractometer
2753 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2012)
1913 reflections with I > 2σ(I)
Tmin = 0.68, Tmax = 0.75Rint = 0.041
16557 measured reflectionsθmax = 26.4°
Refinement top
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115Δρmax = 0.20 e Å3
S = 1.02Δρmin = 0.17 e Å3
2753 reflectionsAbsolute structure: ?
197 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.35291 (6)0.12658 (10)0.30864 (13)0.0383 (3)
O20.40501 (6)0.13333 (10)0.15312 (11)0.0519 (4)
C20.40936 (8)0.12819 (12)0.28065 (16)0.0368 (4)
N30.47580 (7)0.12493 (11)0.39537 (13)0.0400 (4)
H30.5148 (10)0.1258 (12)0.3762 (19)0.048*
C40.48802 (8)0.11770 (12)0.53885 (16)0.0388 (4)
O40.54804 (6)0.11518 (10)0.63875 (11)0.0541 (4)
N50.42916 (7)0.11362 (11)0.56146 (14)0.0408 (4)
H50.4334 (9)0.1104 (12)0.652 (2)0.049*
C60.36125 (8)0.12036 (11)0.44990 (16)0.0364 (4)
O60.31188 (6)0.11963 (9)0.48328 (13)0.0506 (3)
O10.22892 (6)0.14867 (9)0.06812 (13)0.0496 (3)
H10.2670 (12)0.1384 (15)0.154 (2)0.074*
N20.20910 (8)0.34336 (11)0.13192 (16)0.0455 (4)
H2A0.1669 (10)0.3632 (13)0.054 (2)0.055*
H2B0.2401 (10)0.3266 (13)0.091 (2)0.055*
C70.17466 (9)0.17499 (14)0.1081 (2)0.0538 (5)
H7A0.16470.12200.15820.065*
H7B0.13230.18860.01980.065*
C80.19408 (9)0.26071 (13)0.20647 (19)0.0487 (5)
H8A0.15580.27660.23160.058*
H8B0.23520.24650.29690.058*
C90.31829 (9)0.40676 (12)0.33215 (19)0.0445 (4)
C100.36875 (11)0.41489 (17)0.2800 (2)0.0652 (6)
H100.35590.43330.18300.078*
C110.43848 (12)0.3958 (2)0.3712 (3)0.0856 (8)
H110.47220.40090.33510.103*
C120.45783 (11)0.3696 (2)0.5138 (3)0.0829 (8)
H120.50470.35700.57500.099*
C130.40907 (12)0.36203 (19)0.5662 (2)0.0805 (7)
H130.42250.34410.66350.097*
C140.33930 (10)0.38063 (15)0.4766 (2)0.0615 (6)
H140.30620.37540.51430.074*
C150.24244 (10)0.42631 (13)0.2327 (2)0.0549 (5)
H15A0.23910.48280.17430.066*
H15B0.21720.43870.29180.066*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0261 (6)0.0615 (9)0.0268 (7)0.0001 (6)0.0109 (5)0.0007 (6)
O20.0327 (6)0.0998 (10)0.0227 (6)0.0031 (6)0.0116 (5)0.0033 (6)
C20.0296 (8)0.0541 (10)0.0249 (8)0.0008 (7)0.0099 (6)0.0006 (7)
N30.0254 (7)0.0706 (10)0.0246 (7)0.0000 (6)0.0112 (5)0.0005 (6)
C40.0319 (8)0.0575 (11)0.0269 (8)0.0007 (7)0.0126 (7)0.0008 (7)
O40.0298 (6)0.1026 (11)0.0256 (6)0.0008 (6)0.0079 (5)0.0018 (6)
N50.0328 (7)0.0683 (10)0.0222 (7)0.0014 (6)0.0124 (6)0.0005 (6)
C60.0320 (8)0.0486 (10)0.0303 (8)0.0014 (7)0.0148 (7)0.0030 (7)
O60.0345 (6)0.0849 (10)0.0386 (6)0.0021 (6)0.0215 (5)0.0028 (6)
O10.0426 (7)0.0633 (8)0.0348 (7)0.0070 (6)0.0090 (5)0.0004 (6)
N20.0357 (8)0.0533 (9)0.0366 (8)0.0066 (7)0.0052 (6)0.0049 (7)
C70.0346 (9)0.0589 (12)0.0596 (12)0.0028 (8)0.0123 (8)0.0033 (9)
C80.0418 (10)0.0574 (12)0.0499 (10)0.0061 (8)0.0225 (8)0.0072 (8)
C90.0467 (10)0.0429 (10)0.0424 (10)0.0047 (8)0.0179 (8)0.0090 (8)
C100.0614 (13)0.0930 (16)0.0436 (11)0.0183 (11)0.0248 (10)0.0094 (10)
C110.0518 (13)0.139 (2)0.0730 (16)0.0237 (14)0.0335 (12)0.0226 (15)
C120.0456 (12)0.123 (2)0.0627 (15)0.0081 (12)0.0067 (11)0.0152 (14)
C130.0634 (14)0.123 (2)0.0427 (12)0.0133 (14)0.0113 (11)0.0012 (12)
C140.0524 (11)0.0904 (16)0.0414 (10)0.0084 (10)0.0197 (9)0.0079 (10)
C150.0548 (11)0.0468 (11)0.0568 (11)0.0088 (9)0.0180 (9)0.0008 (9)
Geometric parameters (Å, º) top
N1—C21.3361 (19)C7—H7A0.9700
N1—C61.3580 (19)C7—H7B0.9700
O2—C21.2487 (18)C8—H8A0.9700
C2—N31.3807 (19)C8—H8B0.9700
N3—C41.3569 (19)C9—C141.375 (3)
N3—H30.921 (19)C9—C101.379 (3)
C4—O41.2324 (18)C9—C151.503 (2)
C4—N51.3559 (19)C10—C111.384 (3)
N5—C61.392 (2)C10—H100.9300
N5—H50.879 (19)C11—C121.363 (3)
C6—O61.2237 (18)C11—H110.9300
O1—C71.415 (2)C12—C131.346 (3)
O1—H10.91 (2)C12—H120.9300
N2—C81.487 (2)C13—C141.380 (3)
N2—C151.504 (2)C13—H130.9300
N2—H2A0.942 (19)C14—H140.9300
N2—H2B0.939 (19)C15—H15A0.9700
C7—C81.498 (3)C15—H15B0.9700
C2—N1—C6119.72 (13)N2—C8—H8A109.6
O2—C2—N1122.64 (14)C7—C8—H8A109.6
O2—C2—N3117.44 (14)N2—C8—H8B109.6
N1—C2—N3119.92 (13)C7—C8—H8B109.6
C4—N3—C2123.52 (13)H8A—C8—H8B108.1
C4—N3—H3116.4 (11)C14—C9—C10118.30 (18)
C2—N3—H3120.0 (11)C14—C9—C15121.32 (17)
O4—C4—N5123.70 (14)C10—C9—C15120.38 (17)
O4—C4—N3121.90 (14)C9—C10—C11120.35 (19)
N5—C4—N3114.39 (14)C9—C10—H10119.8
C4—N5—C6124.08 (13)C11—C10—H10119.8
C4—N5—H5119.0 (11)C12—C11—C10120.1 (2)
C6—N5—H5116.8 (11)C12—C11—H11119.9
O6—C6—N1123.05 (14)C10—C11—H11119.9
O6—C6—N5118.67 (14)C13—C12—C11120.0 (2)
N1—C6—N5118.28 (13)C13—C12—H12120.0
C7—O1—H1105.3 (14)C11—C12—H12120.0
C8—N2—C15113.71 (14)C12—C13—C14120.6 (2)
C8—N2—H2A108.8 (11)C12—C13—H13119.7
C15—N2—H2A109.5 (11)C14—C13—H13119.7
C8—N2—H2B111.4 (12)C9—C14—C13120.62 (19)
C15—N2—H2B106.1 (11)C9—C14—H14119.7
H2A—N2—H2B107.0 (15)C13—C14—H14119.7
O1—C7—C8111.87 (14)C9—C15—N2111.28 (14)
O1—C7—H7A109.2C9—C15—H15A109.4
C8—C7—H7A109.2N2—C15—H15A109.4
O1—C7—H7B109.2C9—C15—H15B109.4
C8—C7—H7B109.2N2—C15—H15B109.4
H7A—C7—H7B107.9H15A—C15—H15B108.0
N2—C8—C7110.42 (14)
C6—N1—C2—O2179.62 (16)O1—C7—C8—N259.3 (2)
C6—N1—C2—N30.9 (2)C14—C9—C10—C110.8 (3)
O2—C2—N3—C4178.86 (16)C15—C9—C10—C11179.3 (2)
N1—C2—N3—C41.7 (3)C9—C10—C11—C120.6 (4)
C2—N3—C4—O4179.83 (16)C10—C11—C12—C130.2 (4)
C2—N3—C4—N50.2 (2)C11—C12—C13—C140.1 (4)
O4—C4—N5—C6177.24 (17)C10—C9—C14—C130.7 (3)
N3—C4—N5—C62.7 (2)C15—C9—C14—C13179.37 (19)
C2—N1—C6—O6179.16 (15)C12—C13—C14—C90.4 (4)
C2—N1—C6—N51.5 (2)C14—C9—C15—N2101.8 (2)
C4—N5—C6—O6177.10 (16)C10—C9—C15—N278.3 (2)
C4—N5—C6—N13.5 (2)C8—N2—C15—C974.5 (2)
C15—N2—C8—C7168.71 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.921 (19)1.841 (19)2.7609 (17)176.5 (16)
N5—H5···O4ii0.879 (19)1.97 (2)2.8434 (17)172.9 (17)
O1—H1···N10.91 (2)1.82 (2)2.7103 (17)169 (2)
N2—H2A···O2iii0.942 (19)1.979 (19)2.8612 (17)155.2 (16)
N2—H2B···O1iii0.939 (19)2.003 (19)2.835 (2)146.6 (16)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3···O2i0.921 (19)1.841 (19)2.7609 (17)176.5 (16)
N5—H5···O4ii0.879 (19)1.97 (2)2.8434 (17)172.9 (17)
O1—H1···N10.91 (2)1.82 (2)2.7103 (17)169 (2)
N2—H2A···O2iii0.942 (19)1.979 (19)2.8612 (17)155.2 (16)
N2—H2B···O1iii0.939 (19)2.003 (19)2.835 (2)146.6 (16)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1, y, z+3/2; (iii) x+1/2, y+1/2, z.
Acknowledgements top

RRM and DMM thank Dr Ruben A. Toscano for technical assistance. Support of this research by CONACyT (CB 2010–154732) and PAPIIT (IN201711–3) is acknowledged. ESJ thanks PROMEP "Apoyo a perfil deseable".

references
References top

Barszcz, B., Lapiński, A., Graja, A., Flakina, A. M., Chekhlov, A. N. & Lyubovskaya, R. N. (2006). Chem. Phys. 330, 486–494.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

El-Gamel, N. E. A., Wagler, J. & Kroke, E. (2008). J. Mol. Struct. 888, 204–213.

Falvello, L. R., Pascual, I., Tomás, M. & Urriolabeitia, E. P. (1997). J. Am. Chem. Soc. 119, 11894–11902.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Hou, Y. & Yang, Y. (2011). Acta Cryst. E67, o44.

Krepps, M., Parkin, S. & Atwood, D. A. (2001). Cryst. Growth Des. 1, 291–207.

Nichol, G. S. & Clegg, W. (2006). Cryst. Growth Des. 6, 451–460.

Prior, T. J., Armstrong, J. A., Benoit, D. M. & Marshall, K. L. (2013). CrystEngComm, 15, 5838–5843.

Ranganathan, A., Pedireddi, V. R., Sanjayan, G. & Rao, C. N. R. (2000). J. Mol. Struct. 522, 87–94.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Sivashankar, K. (2000). Proc. Indian Acad. Sci. Chem. Sci. 112, 607–614.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

Yang, Y. (2010). Acta Cryst. E66, o2793.