supplementary materials


qk2062 scheme

Acta Cryst. (2013). E69, m635-m636    [ doi:10.1107/S1600536813029656 ]

Di-[mu]-oxido-bis­({2,2'-[ethane-1,2-diylbis(nitrilo­methanylyl­idene)]diphen­olato}titanium(IV)) chloro­form disolvate

K. V. Zaitsev, S. S. Karlov, Y. A. Piskun, I. V. Vasilenko and A. V. Churakov

Abstract top

In the title structure, [Ti2(C16H16N2O2)2O2]·2CHCl3, the Ti atom is coordinated in a distorted octa­hedral geometry by the O,N,N',O' donor set of the salalen ligand and by two [mu]2-oxide O atoms, which bridge two Ti(salalen) fragments into a centrosymmetric dimeric unit. In the central Ti2([mu]2-O)2 fragment, the metal-oxygen distances are significantly different [1.7962 (19) and 1.9292 (19) Å]. In the crystal, the chloro­form mol­ecule is anchored via an N-H...Cl and a bifurcated C-H...(O,O) hydrogen bond. Slipped [pi]-[pi] stacking [shortest C...C distance = 3.585 (4) Å] and C-H...[pi] inter­actions contribute to the coherence of the structure.

Comment top

As a part of our investigation on chemistry of titanium complexes based on tridentate or tetradentate ligands (Zaitsev et al., 2006, 2008) we obtained and studied the structure of the titanium compound [(salalen)TiO]2.

The title titanium salalen complex is centrosymmetric. Both Ti atoms are linked by µ2-oxo briges and possess a distorted octahedral coordination environment with cis interligand angles ranging from 81.27 (9) to 101.11 (8)°. In the central Ti22-O)2 fragment, metal-oxygen distances are significantly different (1.7962 (19) and 1.9292 (19) Å).

In the crystal, the solvent chloroform molecule forms bifurcated C—H···O hydrogen bond with the main molecule with C···O separations of 3.257 (4) and 3.506 (4) Å.

To the best of our knowledge, the title compound represents the second example of structurally characterized salalen complex (Taylor et al., 2006).

Related literature top

For general background to the chemistry affording the tetradentate salalen ligand, see: Matsumoto et al. (2005, 2007). For the crystal structure of a salalen complex, see Taylor et al. (2006). For the structure of the parent titanium salalen compound, see: Tsuchimoto (2001). For our previous work on titanium(IV) complexes with polydentate N,O-ligands, see: Zaitsev et al. (2006, 2008).

Experimental top

The several crystals of the title salalen complex were unexpectedly obtained after attempt to recrystallize the parent [(salalen)TiO]2 (Tsuchimoto, 2001) compound from a hexane-chloroform mixture.

Refinement top

Amine hydrogen atom H2 was found from difference Fourier synthesis and its positional parameters were refined using Uiso(H2) as 1.2Ueq of the parent nitrogen atom. All other hydrogen atoms were placed in calculated positions and refined using a riding model with C—H = 0.95 – 1.00 Å and Uiso(H) = 1.2Ueq(C).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound, showing the numbering scheme adopted. Displacement ellipsoids are shown at the 50% probability level. Hydrogen atoms are omitted for clarity. Trailing A in the atom labels indicates symmetry transformation 1-x, 2-y, 1-z.
Di-µ-oxido-bis({2,2'-[ethane-1,2-diylbis(nitrilomethanylylidene)]diphenolato}titanium(IV)) chloroform disolvate top
Crystal data top
[Ti2(C16H16N2O2)2O2]·2CHCl3Z = 1
Mr = 903.15F(000) = 460
Triclinic, P1Dx = 1.604 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.237 (3) ÅCell parameters from 1919 reflections
b = 10.356 (3) Åθ = 2.2–25.7°
c = 10.936 (3) ŵ = 0.91 mm1
α = 117.075 (4)°T = 150 K
β = 93.113 (4)°Plate, light-yellow
γ = 110.463 (4)°0.08 × 0.06 × 0.01 mm
V = 935.0 (4) Å3
Data collection top
Bruker SMART APEXII
diffractometer
3668 independent reflections
Radiation source: fine-focus sealed tube2761 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.037
ω scansθmax = 26.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
h = 1212
Tmin = 0.931, Tmax = 0.991k = 1212
8213 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: difference Fourier map
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0393P)2 + 0.3887P]
where P = (Fo2 + 2Fc2)/3
3668 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ti2(C16H16N2O2)2O2]·2CHCl3γ = 110.463 (4)°
Mr = 903.15V = 935.0 (4) Å3
Triclinic, P1Z = 1
a = 10.237 (3) ÅMo Kα radiation
b = 10.356 (3) ŵ = 0.91 mm1
c = 10.936 (3) ÅT = 150 K
α = 117.075 (4)°0.08 × 0.06 × 0.01 mm
β = 93.113 (4)°
Data collection top
Bruker SMART APEXII
diffractometer
3668 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
2761 reflections with I > 2σ(I)
Tmin = 0.931, Tmax = 0.991Rint = 0.037
8213 measured reflectionsθmax = 26.0°
Refinement top
R[F2 > 2σ(F2)] = 0.041H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.092Δρmax = 0.41 e Å3
S = 1.03Δρmin = 0.43 e Å3
3668 reflectionsAbsolute structure: ?
238 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.50658 (5)0.65403 (6)0.05634 (5)0.01468 (14)
O10.6684 (2)0.7828 (2)0.21655 (19)0.0185 (4)
O20.3932 (2)0.7673 (2)0.13984 (19)0.0186 (4)
O30.4197 (2)0.4842 (2)0.07711 (19)0.0179 (4)
N10.6242 (2)0.8318 (3)0.0058 (2)0.0166 (5)
N20.3580 (3)0.5823 (3)0.1413 (3)0.0198 (5)
H20.374 (3)0.509 (4)0.198 (3)0.030*
C110.7673 (3)0.9337 (3)0.2842 (3)0.0166 (6)
C120.8403 (3)1.0016 (3)0.4247 (3)0.0217 (6)
H120.81900.93950.46960.026*
C130.9432 (3)1.1579 (4)0.4998 (3)0.0285 (7)
H130.99111.20260.59600.034*
C140.9772 (3)1.2501 (4)0.4359 (3)0.0328 (8)
H141.04751.35780.48790.039*
C150.9077 (3)1.1837 (4)0.2962 (3)0.0274 (7)
H150.93261.24630.25190.033*
C160.8012 (3)1.0262 (3)0.2176 (3)0.0191 (6)
C170.7329 (3)0.9660 (3)0.0716 (3)0.0186 (6)
H170.77131.03030.03080.022*
C180.5634 (3)0.7824 (4)0.1528 (3)0.0226 (7)
H18A0.59680.70470.21950.027*
H18B0.59440.87620.16590.027*
C210.2627 (3)0.7615 (3)0.1055 (3)0.0190 (6)
C220.2212 (3)0.8734 (4)0.2051 (3)0.0236 (7)
H220.28500.95150.29640.028*
C230.0879 (3)0.8713 (4)0.1718 (4)0.0303 (8)
H230.06170.94900.24010.036*
C240.0073 (3)0.7581 (4)0.0410 (4)0.0323 (8)
H240.09910.75650.01920.039*
C250.0326 (3)0.6466 (4)0.0583 (3)0.0268 (7)
H250.03330.56790.14840.032*
C260.1668 (3)0.6469 (3)0.0294 (3)0.0210 (6)
C270.2045 (3)0.5213 (3)0.1398 (3)0.0243 (7)
H27A0.18180.43160.12140.029*
H27B0.14370.47890.23460.029*
C280.4012 (3)0.7066 (3)0.1807 (3)0.0232 (7)
H28A0.36750.78920.12440.028*
H28B0.35620.65860.28250.028*
C10.4183 (3)0.6758 (4)0.4095 (3)0.0325 (8)
H10.42200.68180.32100.039*
Cl10.26515 (9)0.50389 (11)0.37249 (10)0.0455 (3)
Cl20.40908 (11)0.84731 (11)0.54051 (11)0.0507 (3)
Cl30.57585 (8)0.66277 (9)0.46628 (8)0.0301 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0197 (3)0.0154 (3)0.0121 (3)0.0095 (2)0.0039 (2)0.0078 (2)
O10.0219 (11)0.0170 (10)0.0174 (10)0.0081 (9)0.0017 (8)0.0096 (9)
O20.0198 (11)0.0202 (10)0.0149 (10)0.0119 (9)0.0027 (8)0.0059 (9)
O30.0226 (11)0.0189 (10)0.0172 (10)0.0111 (9)0.0089 (8)0.0110 (9)
N10.0229 (13)0.0180 (12)0.0131 (12)0.0119 (11)0.0051 (10)0.0085 (11)
N20.0263 (14)0.0197 (13)0.0166 (13)0.0136 (12)0.0053 (11)0.0086 (11)
C110.0152 (14)0.0162 (14)0.0186 (15)0.0091 (12)0.0042 (12)0.0072 (12)
C120.0233 (16)0.0232 (16)0.0188 (15)0.0084 (13)0.0025 (13)0.0121 (13)
C130.0305 (18)0.0246 (17)0.0209 (16)0.0071 (15)0.0028 (14)0.0086 (14)
C140.0296 (19)0.0222 (17)0.0306 (19)0.0002 (15)0.0005 (15)0.0101 (15)
C150.0301 (18)0.0219 (16)0.0273 (17)0.0049 (14)0.0054 (14)0.0150 (14)
C160.0204 (15)0.0196 (15)0.0182 (15)0.0107 (13)0.0029 (12)0.0088 (13)
C170.0230 (16)0.0213 (16)0.0189 (15)0.0133 (14)0.0091 (13)0.0126 (13)
C180.0290 (17)0.0245 (16)0.0170 (15)0.0103 (14)0.0070 (13)0.0131 (13)
C210.0198 (16)0.0210 (15)0.0254 (16)0.0096 (13)0.0081 (13)0.0179 (14)
C220.0255 (17)0.0278 (17)0.0234 (16)0.0147 (14)0.0094 (13)0.0148 (14)
C230.0337 (19)0.043 (2)0.0357 (19)0.0273 (17)0.0198 (16)0.0273 (17)
C240.0239 (18)0.053 (2)0.043 (2)0.0217 (17)0.0167 (16)0.0374 (19)
C250.0199 (16)0.0364 (18)0.0319 (18)0.0100 (14)0.0061 (14)0.0246 (16)
C260.0228 (16)0.0233 (16)0.0232 (16)0.0100 (14)0.0069 (13)0.0164 (14)
C270.0201 (16)0.0229 (16)0.0228 (16)0.0049 (13)0.0041 (13)0.0102 (14)
C280.0301 (17)0.0268 (16)0.0180 (15)0.0137 (14)0.0055 (13)0.0143 (14)
C10.0328 (19)0.053 (2)0.0273 (18)0.0241 (17)0.0141 (15)0.0276 (17)
Cl10.0276 (5)0.0486 (6)0.0434 (5)0.0112 (4)0.0027 (4)0.0147 (5)
Cl20.0553 (6)0.0449 (6)0.0706 (7)0.0339 (5)0.0283 (5)0.0328 (5)
Cl30.0289 (4)0.0344 (5)0.0295 (4)0.0154 (4)0.0090 (3)0.0164 (4)
Geometric parameters (Å, º) top
Ti1—O31.7962 (19)C16—C171.447 (4)
Ti1—O11.8991 (19)C17—H170.9500
Ti1—O21.9102 (19)C18—C281.511 (4)
Ti1—O3i1.9292 (19)C18—H18A0.9900
Ti1—N22.220 (2)C18—H18B0.9900
Ti1—N12.232 (2)C21—C221.399 (4)
Ti1—Ti1i2.7958 (12)C21—C261.408 (4)
O1—C111.332 (3)C22—C231.383 (4)
O2—C211.341 (3)C22—H220.9500
O3—Ti1i1.9292 (19)C23—C241.376 (5)
N1—C171.277 (3)C23—H230.9500
N1—C181.468 (3)C24—C251.384 (4)
N2—C281.471 (4)C24—H240.9500
N2—C271.479 (4)C25—C261.392 (4)
N2—H20.81 (3)C25—H250.9500
C11—C121.393 (4)C26—C271.507 (4)
C11—C161.414 (4)C27—H27A0.9900
C12—C131.382 (4)C27—H27B0.9900
C12—H120.9500C28—H28A0.9900
C13—C141.386 (4)C28—H28B0.9900
C13—H130.9500C1—Cl21.742 (3)
C14—C151.378 (4)C1—Cl11.765 (3)
C14—H140.9500C1—Cl31.767 (3)
C15—C161.403 (4)C1—H11.0000
C15—H150.9500
O3—Ti1—O1101.11 (8)C15—C16—C11118.5 (3)
O3—Ti1—O298.43 (9)C15—C16—C17118.2 (3)
O1—Ti1—O295.69 (8)C11—C16—C17123.4 (3)
O3—Ti1—O3i82.80 (9)N1—C17—C16124.0 (3)
O1—Ti1—O3i100.23 (8)N1—C17—H17118.0
O2—Ti1—O3i163.49 (8)C16—C17—H17118.0
O3—Ti1—N2100.65 (9)N1—C18—C28107.2 (2)
O1—Ti1—N2158.23 (9)N1—C18—H18A110.3
O2—Ti1—N281.27 (9)C28—C18—H18A110.3
O3i—Ti1—N282.33 (9)N1—C18—H18B110.3
O3—Ti1—N1168.80 (8)C28—C18—H18B110.3
O1—Ti1—N182.93 (8)H18A—C18—H18B108.5
O2—Ti1—N191.50 (8)O2—C21—C22119.4 (3)
O3i—Ti1—N186.21 (8)O2—C21—C26121.7 (3)
N2—Ti1—N175.64 (9)C22—C21—C26118.9 (3)
O3—Ti1—Ti1i43.20 (6)C23—C22—C21120.6 (3)
O1—Ti1—Ti1i104.27 (6)C23—C22—H22119.7
O2—Ti1—Ti1i139.09 (7)C21—C22—H22119.7
O3i—Ti1—Ti1i39.60 (5)C24—C23—C22120.8 (3)
N2—Ti1—Ti1i91.53 (7)C24—C23—H23119.6
N1—Ti1—Ti1i125.78 (6)C22—C23—H23119.6
C11—O1—Ti1136.03 (17)C23—C24—C25119.2 (3)
C21—O2—Ti1138.85 (18)C23—C24—H24120.4
Ti1—O3—Ti1i97.20 (9)C25—C24—H24120.4
C17—N1—C18119.5 (2)C24—C25—C26121.6 (3)
C17—N1—Ti1127.32 (19)C24—C25—H25119.2
C18—N1—Ti1113.18 (17)C26—C25—H25119.2
C28—N2—C27113.9 (2)C25—C26—C21118.9 (3)
C28—N2—Ti1112.28 (17)C25—C26—C27119.7 (3)
C27—N2—Ti1112.94 (17)C21—C26—C27121.3 (2)
C28—N2—H2107 (2)N2—C27—C26113.1 (2)
C27—N2—H2109 (2)N2—C27—H27A109.0
Ti1—N2—H2100 (2)C26—C27—H27A109.0
O1—C11—C12118.7 (2)N2—C27—H27B109.0
O1—C11—C16122.2 (2)C26—C27—H27B109.0
C12—C11—C16119.1 (3)H27A—C27—H27B107.8
C13—C12—C11120.9 (3)N2—C28—C18109.8 (2)
C13—C12—H12119.5N2—C28—H28A109.7
C11—C12—H12119.5C18—C28—H28A109.7
C12—C13—C14120.5 (3)N2—C28—H28B109.7
C12—C13—H13119.7C18—C28—H28B109.7
C14—C13—H13119.7H28A—C28—H28B108.2
C15—C14—C13119.2 (3)Cl2—C1—Cl1110.39 (17)
C15—C14—H14120.4Cl2—C1—Cl3109.84 (18)
C13—C14—H14120.4Cl1—C1—Cl3109.57 (18)
C14—C15—C16121.7 (3)Cl2—C1—H1109.0
C14—C15—H15119.2Cl1—C1—H1109.0
C16—C15—H15119.2Cl3—C1—H1109.0
Symmetry code: (i) x+1, y+1, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl3i0.81 (3)2.84 (3)3.575 (3)151 (3)
C1—H1···O21.002.553.506 (4)160
C1—H1···O31.002.513.257 (4)131
C17—H17···Cg2ii0.952.813.754 (4)174
C23—H23···Cg1iii0.952.863.747 (4)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x1, y, z.
Hydrogen-bond geometry (Å, º) top
Cg1 and Cg2 are the centroids of the C11–C16 and C21–C26 rings, respectively.
D—H···AD—HH···AD···AD—H···A
N2—H2···Cl3i0.81 (3)2.84 (3)3.575 (3)151 (3)
C1—H1···O21.002.553.506 (4)159.6
C1—H1···O31.002.513.257 (4)131.4
C17—H17···Cg2ii0.952.813.754 (4)174
C23—H23···Cg1iii0.952.863.747 (4)156
Symmetry codes: (i) x+1, y+1, z; (ii) x+1, y+2, z; (iii) x1, y, z.
Acknowledgements top

This work was partially supported by the RFBR (project 12–03–90020-Bel_a) and a grant from the President of the Russian Federation to support the research of young Russian scientists and doctors (MD-3634.2012.3).

references
References top

Bruker (2008). APEX2, SADABS and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Matsumoto, K., Saito, B. & Katsuki, T. (2007). Chem. Commun. pp. 3619–3627.

Matsumoto, K., Sawada, Y., Saito, B., Sakai, K. & Katsuki, T. (2005). Angew. Chem. Int. Ed. 44, 4935–4939.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Taylor, M. K., Reglinski, J., Berlouis, L. E. A. & Kennedy, A. R. (2006). Inorg. Chim. Acta, 359, 2455–2464.

Tsuchimoto, M. (2001). Bull. Chem. Soc. Jpn, 74, 2101–2105.

Zaitsev, K. V., Bermeshev, M. V., Samsonov, A. A., Oprunenko, J. F., Churakov, A. V., Howard, J. A. K., Karlov, S. S. & Zaitseva, G. S. (2008). New J. Chem. 32, 1415–1431.

Zaitsev, K. V., Karlov, S. S., Selina, A. A., Oprunenko, Yu. F., Churakov, A. V., Neumüller, B., Howard, J. A. K. & Zaitseva, G. S. (2006). Eur. J. Inorg. Chem. pp. 1987–1999.