[Journal logo]

Volume 69 
Part 12 
Pages o1853-o1854  
December 2013  

Received 24 November 2013
Accepted 25 November 2013
Online 30 November 2013

Key indicators
Single-crystal X-ray study
T = 173 K
Mean [sigma](C-C) = 0.002 Å
R = 0.042
wR = 0.121
Data-to-parameter ratio = 14.2
Details
Open access

3,4-Di­methyl­phenyl quinoline-2-carboxyl­ate

aDepartment of Chemistry, Yuvaraja's College, Mysore 570 005, India,bDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India,cP.P.S.F.T. Department, Central Food Technplogy Research institute, Mysore 570 005, India, and dDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA
Correspondence e-mail: jjasinski@keene.edu

In the title compound, C18H15NO2, the dihedral angle between the mean planes of the quinoline ring system and the phenyl ring is 48.1 (5)°. The mean plane of the carboxyl­ate group is twisted from the mean planes of the latter by 19.8 (8) and 64.9 (5)°, respectively. The crystal packing features weak C-H...O inter­actions, which form chains along [010].

Related literature

For heterocycles in natural products, see: Morimoto et al. (1991[Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.]); Michael (1997[Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.]). For heterocycles in fragrances and dyes, see: Padwa et al. (1999[Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.]). For heterocycles in biologically active compounds, see: Markees et al. (1970[Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.]); Campbell et al. (1988[Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31,1031-1035.]). For the use of quinoline alkaloids as drugs for the treatment of malaria, see: Robert & Meunier (1998[Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.]). For quinoline as a privileged scaffold in cancer drug discovery, see: Solomon & Lee (2011[Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.]). For related structures, see: Fazal et al. (2012[Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231-o3232.]); Butcher et al. (2007[Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.]); Jing & Qin (2008[Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.]); Jasinski et al. (2010[Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.]). For standard bond lengths, see: Allen et al. (1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]).

[Scheme 1]

Experimental

Crystal data
  • C18H15NO2

  • Mr = 277.32

  • Monoclinic, P 21 /c

  • a = 6.19172 (17) Å

  • b = 15.4196 (4) Å

  • c = 14.6585 (4) Å

  • [beta] = 90.761 (3)°

  • V = 1399.38 (7) Å3

  • Z = 4

  • Cu K[alpha] radiation

  • [mu] = 0.69 mm-1

  • T = 173 K

  • 0.44 × 0.22 × 0.16 mm

Data collection
  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO and CrysAlis RED; Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]) Tmin = 0.921, Tmax = 1.000

  • 8355 measured reflections

  • 2740 independent reflections

  • 2387 reflections with I > 2[sigma](I)

  • Rint = 0.042

Refinement
  • R[F2 > 2[sigma](F2)] = 0.042

  • wR(F2) = 0.121

  • S = 1.05

  • 2740 reflections

  • 193 parameters

  • H-atom parameters constrained

  • [Delta][rho]max = 0.28 e Å-3

  • [Delta][rho]min = -0.24 e Å-3

Table 1
Hydrogen-bond geometry (Å, °)

D-H...A D-H H...A D...A D-H...A
C8-H8...O1i 0.93 2.48 3.2735 (16) 144
Symmetry code: (i) [-x, y-{\script{1\over 2}}, -z+{\script{1\over 2}}].

Data collection: CrysAlis PRO (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); cell refinement: CrysAlis PRO; data reduction: CrysAlis RED (Agilent, 2012[Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.]); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007[Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.]); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: OLEX2 (Dolomanov et al., 2009[Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.]); software used to prepare material for publication: OLEX2.


Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QM2101 ).


Acknowledgements

EF thanks the CFTRI, Mysore and Yuvaraja's college, UOM for providing research facilities. EF is grateful to Mr J. R. Manjunatha, PPSFT, CFTRI for the NMR spectra. JPJ acknowledges the NSF-MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

References

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Butcher, R. J., Jasinski, J. P., Mayekar, A. N., Yathirajan, H. S. & Narayana, B. (2007). Acta Cryst. E63, o3603.  [CSD] [CrossRef] [IUCr Journals]
Campbell, S. F., Hardstone, J. D. & Palmer, M. J. (1988). J. Med. Chem. 31,1031-1035.  [CrossRef] [ChemPort] [PubMed]
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Fazal, E., Jasinski, J. P., Krauss, S. T., Sudha, B. S. & Yathirajan, H. S. (2012). Acta Cryst. E68, o3231-o3232.  [CrossRef] [ChemPort] [IUCr Journals]
Jasinski, J. P., Butcher, R. J., Mayekar, A. N., Yathirajan, H. S., Narayana, B. & Sarojini, B. K. (2010). J. Mol. Struct. 980, 172-181.  [Web of Science] [CSD] [CrossRef] [ChemPort]
Jing, L.-H. & Qin, D.-B. (2008). Z. Kristallogr. 223, 35-36.  [ChemPort]
Markees, D. G., Dewey, V. C. & Kidder, G. W. (1970). J. Med. Chem. 13, 324-326.  [CrossRef] [ChemPort] [PubMed] [Web of Science]
Michael, J. P. (1997). Nat. Prod. Rep. 14, 605-608.  [CrossRef] [ChemPort]
Morimoto, Y., Matsuda, F. & Shirahama, H. (1991). Synlett, 3, 202-203.  [CrossRef]
Padwa, A., Brodney, M. A., Liu, B., Satake, K. & Wu, T. (1999). J. Org. Chem. 64, 3595-3607.  [CrossRef] [PubMed] [ChemPort]
Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786-790.  [Web of Science] [CrossRef] [ChemPort] [IUCr Journals]
Robert, A. & Meunier, B. (1998). Chem. Soc. Rev. 27, 273-279.  [Web of Science] [CrossRef] [ChemPort]
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.  [CrossRef] [ChemPort] [IUCr Journals]
Solomon, V. R. & Lee, H. (2011). Curr. Med. Chem. 18, 1488-1508.  [Web of Science] [ChemPort] [PubMed]


Acta Cryst (2013). E69, o1853-o1854   [ doi:10.1107/S1600536813032157 ]

This is an open-access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.