supplementary materials


rz5088 scheme

Acta Cryst. (2013). E69, m661-m662    [ doi:10.1107/S1600536813030687 ]

Bis(4-amino­pyridinium) [mu]6-oxido-dodeca-[mu]2-oxido-hexaoxido[rhenium(VII)tetratungsten(VI)vanadium(V)]ate hepta­hydrate

A. Maaloui, S. A. Toumi and M. Rzaigui

Abstract top

In the title organic-inorganic hybrid compound, (C5H7N2)2[ReVW4O19]·7H2O, the Lindqvist-type polyoxido anion has crystallographically imposed mm2 symmetry and is built up by six MO6 (M = W, V, Re) edge-sharing distorted octa­hedra. The Re and V atoms share the same crystallographic site in a 0.5:0.5 ratio. The 4-amino­pyridinium cations lie on a mirror plane. Three of the four independent water O atoms in the asymmetric unit are located on a mirror plane whereas the remaining O atom has mm2 site symmetry. In the crystal, the cations, anions and water mol­ecules are linked into a three-dimensional network through O-H...O and N-H...O hydrogen-bonding inter­actions.

Comment top

Polyoxidometalate are of great interest in different fields such as medecine, biology, catalysis, material sciences, chemical analysis (Pope & Müller, 1991; Pope & Müller, 1994). Among this large class of compounds, Lindqvist anions [M6O19]n- have been intensively studied since the early characterization of Na7HNb6O19.15H2O (Lindqvist, 1953). However, studies of substituted hexatungstate [MnW6-nO19](2+n)- are relatively scarce. Up to now, few compounds are cited in the literature, such as [(n-C4H9)4N]3MW5O19 (M = Nb, V) (Bannani et al., 2007), {[(C7H8)Rh]5(Nb2W4O19)2}[(n-C4H9)N]3 (Besecker et al., 1982), [Cu(phen)(H2O)3]2[V2W4O19] and [Cu(bpy)(H2O)]2[V2W4O19]·4H2O (Wang et al., 2011) and [Ni(bpy)3]2[W4V2O19] (Wang et al., 2006), whereas substituted Lindqvist-type polyoxotungstates based on [MnM'pW6-n-pO19](2+n+p)- anions have not been reported hitherto. On the best of our knowledge the reported title salt, (C5H7N2)2·[ReVW4O19]·7H2O (I), is the first example of this kind of substituted Lindqvist structure.

The asymmetric unit of (I) contains 1.75 water molecules, one half of a 4-aminopyridinium cation and one fourth of a [ReVW4O19]2- polyanion, in which Re and V metals share the same site in a 0.5:0.5 ratio. All constituents are completed by imposed crystallographic symmetries (Fig. 1). Three out of the four independent water O atoms in the asymmetric unit have mirror symmetry, while a fouth O atom has mm2 site symmetry. It is to be mentioned that the O3W and O4W oxygen atoms associated to water molecules have relatively high thermal desorder and could not be anisotropically refined. In the crystal packing, cations and solvent water molecules assemble the discrete [ReVW4O19]2- anion complexes through OW—H···O and N—H···O hydrogen bonding interactions (Table 1) to form a supramolecular three-dimensional network as shown in Figure 2. The structure of the [ReVW4O19]2- polyanion is basically the same as that of Lindqvist-type anion (Lindqvist, 1953). It is built upby six MO6 (M = W, V, Re) edge-sharing distorted octahedra and exhibits the characteristic M—O bond-length range, with the shortest bonds being the M—O terminal bonds and the longest being those involving the central O atom. The geometry features of the polyanion are in agreement with those of the Lindqvist-type polyoxidotungstate reported by Meng et al. (2006). The valence bond calculation (Brown & Altermatt, 1985) gives effective bond valences of 4.9847 for the V cation, 7.1447 for the Re cation and 6.0697 and 6.1369 for the two independent W cations. These values are consistent with the oxidation states V(V), Re(VII) and W(VI). In an attempt to shed more light on the structure of the hexametalate anion, we contemplated 51V and 183W NMR studies on the title complex. In fact, regarding the [M6O19]n- complex structure, the vanadium and rhenium heteroatoms may occupy cis or trans positions in the octahedral structure. The 183W NMR study shows two signals with relative intensity of ca 2:2, which can be assigned to the two equatorial (Weq) and the two axial (Wax) tungsten atoms respectively. On the other hand, the 51V NMR spectrum presents one signal at 508.7 ppm. These results are consistent with the C2v symmetry of the disubstitued hexametalate structure with preferential cis configuration as reported in literature (Chen et al., 2004; Domaille, 1984; Fedotov & Maksimovskaya, 2006; Leparulo-Loftus & Pope, 1987). All these observations corroborate the structural results in suggesting that both rhenium and vanadium atoms (with 0.5/0.5 occupation) occupy preferentially the same site thus leading to a cis-[X2W4O19]2- (X = Re0.5V0.5) anion configuration.

Related literature top

For applications of polyoxidometalates, see: Pope & Müller (1991, 1994). For bond-valence calculations, see: Brown & Altermatt (1985). For related structures, see: Lindqvist (1953); Bannani et al. (2007); Besecker et al. (1982); Wang et al. (2011); Wang et al. (2006); Meng et al. (2006). For related NMR investigations, see: Chen et al. (2004); Domaille (1984); Fedotov & Maksimovskaya (2006); Leparulo-Loftus & Pope (1987).

Experimental top

The title compound was prepared by the reaction of vanadium(V) oxide (0.18 g, 1 mmol), rhenium(VII) oxide (0.48 g,1 mmol), Na2WO4.2H2O (2 g, 6 mmol) and 4-aminopyridine (0.19 g, 2 mmol) dissolved in 50 ml of distilled water and then stirred for 1 h. Yellowish single crystals were obtained after two weeks by slow evaporation at room temperature (yield: 59% based on W). Anal. Calc. for C10H28N4O26ReVW4: H 1.76, C 7.53, N 3.52, Re 11.69, V 3.20, W 46.16%; Found: H 1.81, C 7.57, N 3.50, Re 11.71, V 3.23, W 46.14%. 183W NMR δ (p.p.m.): 86.5, 65.4; 51V NMR δ (p.p.m.): 508.7.

Refinement top

An initial attempt to refine the crystal structure with the Re atom disordered over three independent sites resulted in rather high atomic displacement parameters for the heaviest atoms (Re1, W1 and W2) as a possible consequence of thelarge number of restraints required by this model. The refinement of a model implying the Re atom sharing only the site occupied by the vanadium atom with an occupancy factor of 0.5 rapidly converged to a plausible result with low residuals. These observations are also supported by NMR study as detailed in Comment section. In spite the crystal selected for the X-ray analysis appeared to be of good quality, its diffraction ability was very poor. This may account for the rather high residual peaks, high R values and unresolved disorder affecting part of the water molecules. In fact, anisotropical refinement of the O atoms associated to water molecules resulted in unreasonable Uij values for atoms O3W and O4W, which were therefore isotropically refined. The water H atoms could not be located and were placed geometrically sensible positions using restraints [O—H = 0.85 (1) Å, H···H = 1.44 (2) Å and Uiso(H) = 1.5Ueq(O). H atoms attached to C and N atoms were fixed geometrically and treated as riding, with C—H = 0.93 Å and N—H = 0.86 Å with Uiso(H) = 1.2Ueq(C, N). In the final difference Fourier map, the highest residual electron density peak and the deepest hole are located 0.78 and 0.64 Å respectively from W2.

Computing details top

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994); cell refinement: CAD-4 EXPRESS (Enraf–Nonius, 1994); data reduction: XCAD4 (Harms & Wocadlo, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. A view of the title compound with displacement ellipsoids drawn at the 30% probability level. H atoms are represented as small spheres of arbitrary radii. Hydrogen bonds are shown as dashed lines. Symmetry codes: (i) 1/2 + x, - y, 1 - z; (ii) 1/2 + x, y, 1 - z; (iii) x, 1 - y, z.
[Figure 2] Fig. 2. Packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted.
Bis(4-aminopyridinium) µ6-oxido-dodeca-µ2-oxido-hexaoxido[rhenium(VII)tetratungsten(VI)vanadium(V)]ate heptahydrate top
Crystal data top
(C5H7N2)2[ReVW4O19]·7H2OF(000) = 1436
Mr = 1592.90Dx = 3.068 Mg m3
Orthorhombic, PmmaAg Kα radiation, λ = 0.56087 Å
Hall symbol: -P 2a 2aCell parameters from 25 reflections
a = 17.837 (2) Åθ = 9–11°
b = 9.163 (4) ŵ = 9.22 mm1
c = 10.552 (3) ÅT = 298 K
V = 1724.5 (9) Å3Prism, yellow
Z = 20.43 × 0.27 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2083 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 28.0°, θmin = 2.3°
non–profiled ω scansh = 292
Absorption correction: multi-scan
(Blessing, 1995)
k = 215
Tmin = 0.100, Tmax = 0.306l = 172
6539 measured reflections2 standard reflections every 120 min
4385 independent reflections intensity decay: none
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.192H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0813P)2 + 4.9537P]
where P = (Fo2 + 2Fc2)/3
4385 reflections(Δ/σ)max = 0.003
138 parametersΔρmax = 2.94 e Å3
17 restraintsΔρmin = 2.83 e Å3
Crystal data top
(C5H7N2)2[ReVW4O19]·7H2OV = 1724.5 (9) Å3
Mr = 1592.90Z = 2
Orthorhombic, PmmaAg Kα radiation, λ = 0.56087 Å
a = 17.837 (2) ŵ = 9.22 mm1
b = 9.163 (4) ÅT = 298 K
c = 10.552 (3) Å0.43 × 0.27 × 0.15 mm
Data collection top
Enraf–Nonius CAD-4
diffractometer
2083 reflections with I > 2σ(I)
Absorption correction: multi-scan
(Blessing, 1995)
Rint = 0.052
Tmin = 0.100, Tmax = 0.306θmax = 28.0°
6539 measured reflections2 standard reflections every 120 min
4385 independent reflections intensity decay: none
Refinement top
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.192Δρmax = 2.94 e Å3
S = 1.03Δρmin = 2.83 e Å3
4385 reflectionsAbsolute structure: ?
138 parametersAbsolute structure parameter: ?
17 restraintsRogers parameter: ?
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
W10.37770 (3)0.00000.34550 (7)0.03479 (18)
W20.25000.17748 (8)0.18441 (8)0.0497 (2)
Re10.25000.18032 (13)0.49071 (13)0.0505 (3)0.50
V10.25000.18032 (13)0.49071 (13)0.0505 (3)0.50
O1C0.25000.00000.3367 (12)0.023 (2)
O1E0.25000.3071 (16)0.6049 (16)0.068 (4)
O2E0.25000.3115 (18)0.0720 (17)0.081 (5)
O3E0.4740 (6)0.00000.3427 (13)0.050 (3)
O10.25000.00000.0922 (13)0.048 (4)
O20.3545 (4)0.1420 (9)0.2154 (9)0.0466 (19)
O30.25000.2888 (11)0.3345 (12)0.042 (3)
O40.3529 (3)0.1446 (8)0.4650 (8)0.0375 (16)
O50.25000.00000.5902 (15)0.039 (3)
N10.3903 (7)0.50000.6867 (14)0.057 (4)
H1A0.34220.50000.69010.068*
N20.6091 (7)0.50000.6435 (17)0.057 (4)
H2A0.63430.41980.6490.069*
C10.4219 (6)0.6284 (14)0.6845 (14)0.056 (3)
H10.39390.71340.69380.067*
C20.4963 (6)0.6327 (12)0.6681 (13)0.043 (3)
H20.52140.72160.66420.052*
C30.5363 (7)0.50000.6570 (16)0.038 (3)
O1W0.25000.50000.8564 (14)0.063 (6)
H1W10.25000.42260.81980.095*
O2W0.3772 (8)0.00000.7518 (15)0.079 (5)
H1W20.4100.00000.6940.119*
H2W20.3320.00000.7270.119*
O3W0.553 (3)0.50000.960 (5)0.27 (3)*
H1W30.56440.58760.97410.402*
O4W0.429 (4)0.00000.962 (6)0.34 (3)*
H1W40.3860.00000.9280.510*
H2W40.4660.00000.9100.510*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
W10.0230 (2)0.0289 (3)0.0525 (4)0.0000.0066 (2)0.000
W20.0455 (4)0.0462 (4)0.0574 (5)0.0000.0000.0195 (3)
Re10.0337 (5)0.0436 (6)0.0743 (8)0.0000.0000.0133 (5)
V10.0337 (5)0.0436 (6)0.0743 (8)0.0000.0000.0133 (5)
O1C0.019 (4)0.017 (5)0.032 (6)0.0000.0000.000
O1E0.035 (5)0.062 (9)0.108 (12)0.0000.0000.029 (9)
O2E0.083 (11)0.078 (11)0.082 (10)0.0000.0000.065 (9)
O3E0.023 (4)0.046 (6)0.081 (9)0.0000.012 (5)0.000
O10.066 (10)0.061 (11)0.016 (6)0.0000.0000.000
O20.040 (4)0.037 (4)0.063 (5)0.000 (4)0.013 (4)0.006 (4)
O30.030 (4)0.021 (4)0.076 (8)0.0000.0000.000 (5)
O40.019 (2)0.030 (3)0.063 (5)0.000 (3)0.001 (3)0.012 (3)
O50.027 (6)0.047 (9)0.043 (8)0.0000.0000.000
N10.028 (6)0.076 (12)0.066 (11)0.0000.006 (6)0.000
N20.029 (5)0.077 (12)0.066 (10)0.0000.013 (6)0.000
C10.033 (5)0.053 (7)0.080 (10)0.017 (5)0.014 (5)0.006 (7)
C20.037 (4)0.023 (4)0.069 (8)0.001 (4)0.003 (5)0.001 (5)
C30.029 (5)0.029 (6)0.056 (9)0.0000.015 (6)0.000
O1W0.034 (7)0.13 (2)0.027 (8)0.0000.0000.000
O2W0.057 (8)0.109 (14)0.071 (11)0.0000.007 (7)0.000
Geometric parameters (Å, º) top
O1C—W12.2796 (8)C2—C11.339 (15)
O1C—W1i2.2796 (8)C2—H20.9300
O1C—W2i2.286 (9)C1—N11.305 (13)
O1C—W22.286 (9)C1—H10.9300
O1C—Re12.318 (9)N1—C1ii1.305 (13)
O1C—V1i2.318 (9)N1—H1A0.8600
O1C—Re1i2.318 (9)O2E—W21.707 (12)
O3—W21.883 (12)W1—O4iii1.882 (7)
O3—Re11.925 (12)W1—O2iii1.936 (9)
O1E—Re11.674 (14)W1—Re1i3.2040 (11)
O4—W11.882 (7)W1—Re13.2040 (11)
O4—Re11.885 (6)W2—O2iv1.921 (8)
O5—V1i1.958 (9)W2—Re13.2322 (18)
O5—Re1i1.958 (9)Re1—O4iv1.885 (6)
O5—Re11.958 (9)Re1—W1i3.2040 (11)
O3E—W11.718 (10)N2—H2A0.8600
O2—W21.921 (8)O1W—H1W10.81
O2—W11.936 (9)O2W—H1W20.85
O1—W21.895 (7)O2W—H2W20.85
O1—W2i1.895 (7)O3W—H1W30.84
C3—N21.307 (17)O4W—H1W40.85
C3—C2ii1.414 (12)O4W—H2W40.85
C3—C21.414 (12)
W1—O1C—W1i175.3 (6)O2—W1—Re180.8 (2)
W1—O1C—W2i91.6 (2)O1C—W1—Re146.3 (2)
W1i—O1C—W2i91.6 (2)Re1i—W1—Re162.09 (5)
W1—O1C—W291.6 (2)O2E—W2—O3101.2 (8)
W1i—O1C—W291.6 (2)O2E—W2—O1105.1 (8)
W2i—O1C—W290.7 (4)O3—W2—O1153.7 (5)
W1—O1C—Re188.4 (2)O2E—W2—O2103.9 (3)
W1i—O1C—Re188.4 (2)O3—W2—O287.1 (3)
W2i—O1C—Re1179.9 (4)O1—W2—O286.7 (3)
W2—O1C—Re189.19 (5)O2E—W2—O2iv103.9 (3)
W1—O1C—V1i88.4 (2)O3—W2—O2iv87.1 (3)
W1i—O1C—V1i88.4 (2)O1—W2—O2iv86.7 (3)
W2i—O1C—V1i89.19 (5)O2—W2—O2iv152.2 (5)
W2—O1C—V1i179.9 (4)O2E—W2—O1C179.4 (7)
Re1—O1C—V1i90.9 (4)O3—W2—O1C78.1 (4)
W1—O1C—Re1i88.4 (2)O1—W2—O1C75.6 (4)
W1i—O1C—Re1i88.4 (2)O2—W2—O1C76.1 (3)
W2i—O1C—Re1i89.19 (5)O2iv—W2—O1C76.1 (3)
W2—O1C—Re1i179.9 (4)O2E—W2—Re1133.6 (7)
Re1—O1C—Re1i90.9 (4)O3—W2—Re132.3 (3)
W2—O3—Re1116.1 (5)O1—W2—Re1121.4 (4)
W1—O4—Re1116.6 (4)O2—W2—Re180.3 (3)
V1i—O5—Re1115.1 (8)O2iv—W2—Re180.3 (3)
Re1i—O5—Re1115.1 (8)O1C—W2—Re145.8 (2)
W2—O2—W1116.2 (4)O1E—Re1—O4102.9 (2)
W2—O1—W2i118.2 (7)O1E—Re1—O4iv102.9 (2)
N2—C3—C2ii120.6 (6)O4—Re1—O4iv154.0 (4)
N2—C3—C2120.6 (6)O1E—Re1—O3105.0 (7)
C2ii—C3—C2118.6 (12)O4—Re1—O388.1 (3)
C1—C2—C3119.0 (11)O4iv—Re1—O388.1 (3)
C1—C2—H2120.5O1E—Re1—O5101.5 (7)
C3—C2—H2120.5O4—Re1—O586.0 (3)
N1—C1—C2117.1 (12)O4iv—Re1—O586.0 (3)
N1—C1—H1121.4O3—Re1—O5153.5 (5)
C2—C1—H1121.4O1E—Re1—O1C178.5 (7)
C1ii—N1—C1128.8 (14)O4—Re1—O1C77.0 (2)
C1ii—N1—H1A115.6O4iv—Re1—O1C77.0 (2)
C1—N1—H1A115.6O3—Re1—O1C76.6 (4)
O3E—W1—O4104.2 (4)O5—Re1—O1C77.0 (4)
O3E—W1—O4iii104.2 (4)O1E—Re1—W1i134.60 (4)
O4—W1—O4iii89.5 (5)O4—Re1—W1i122.3 (2)
O3E—W1—O2iii101.6 (4)O4iv—Re1—W1i31.7 (2)
O4—W1—O2iii154.0 (3)O3—Re1—W1i81.8 (2)
O4iii—W1—O2iii87.3 (4)O5—Re1—W1i79.7 (3)
O3E—W1—O2101.6 (4)O1C—Re1—W1i45.33 (2)
O4—W1—O287.3 (4)O1E—Re1—W1134.60 (4)
O4iii—W1—O2154.0 (3)O4—Re1—W131.7 (2)
O2iii—W1—O284.4 (5)O4iv—Re1—W1122.3 (2)
O3E—W1—O1C176.7 (6)O3—Re1—W181.8 (2)
O4—W1—O1C78.1 (3)O5—Re1—W179.7 (3)
O4iii—W1—O1C78.1 (3)O1C—Re1—W145.33 (2)
O2iii—W1—O1C76.0 (3)W1i—Re1—W190.62 (4)
O2—W1—O1C76.0 (3)O1E—Re1—W2136.5 (6)
O3E—W1—Re1i136.0 (3)O4—Re1—W281.7 (3)
O4—W1—Re1i82.9 (2)O4iv—Re1—W281.7 (3)
O4iii—W1—Re1i31.75 (19)O3—Re1—W231.5 (3)
O2iii—W1—Re1i80.8 (2)O5—Re1—W2122.0 (4)
O2—W1—Re1i122.3 (2)O1C—Re1—W245.0 (2)
O1C—W1—Re1i46.3 (2)W1i—Re1—W261.16 (3)
O3E—W1—Re1136.0 (3)W1—Re1—W261.16 (3)
O4—W1—Re131.75 (19)C3—N2—H2A121
O4iii—W1—Re182.9 (2)H1W2—O2W—H2W2116
O2iii—W1—Re1122.3 (2)H1W4—O4W—H2W4116
N2—C3—C2—C1178.7 (16)W1i—O1C—Re1—W291.7 (2)
C2ii—C3—C2—C12 (3)O3E—W1—Re1—O1E5.6 (10)
C3—C2—C1—N11 (2)O4—W1—Re1—O1E3.2 (10)
C2—C1—N1—C1ii6 (3)O4iii—W1—Re1—O1E97.6 (9)
Re1—O4—W1—O3E178.3 (5)O2—W1—Re1—O1E102.8 (9)
Re1—O4—W1—O4iii77.1 (5)O1C—W1—Re1—O1E177.8 (9)
Re1—O4—W1—O2iii5.6 (11)Re1i—W1—Re1—O1E122.9 (9)
Re1—O4—W1—O277.0 (5)O3E—W1—Re1—O42.4 (7)
Re1—O4—W1—O1C0.7 (4)O4iii—W1—Re1—O4100.7 (7)
Re1—O4—W1—Re1i46.0 (4)O2iii—W1—Re1—O4177.1 (6)
W2—O2—W1—O3E179.7 (5)O2—W1—Re1—O499.7 (6)
W2—O2—W1—O476.3 (5)O1C—W1—Re1—O4179.0 (6)
W2—O2—W1—O4iii6.9 (12)Re1i—W1—Re1—O4126.1 (5)
W2—O2—W1—O2iii78.9 (5)O3E—W1—Re1—O4iv179.8 (6)
W2—O2—W1—O1C2.0 (4)O4—W1—Re1—O4iv177.8 (8)
W2—O2—W1—Re1i3.5 (6)O4iii—W1—Re1—O4iv77.05 (19)
W2—O2—W1—Re145.1 (4)O2iii—W1—Re1—O4iv5.1 (4)
W2i—O1C—W1—O4179.3 (4)O2—W1—Re1—O4iv82.5 (4)
W2—O1C—W1—O488.6 (3)O1C—W1—Re1—O4iv3.2 (4)
Re1—O1C—W1—O40.5 (3)Re1i—W1—Re1—O4iv51.7 (3)
V1i—O1C—W1—O491.5 (4)O3E—W1—Re1—O397.4 (5)
Re1i—O1C—W1—O491.5 (4)O4—W1—Re1—O399.8 (5)
W2i—O1C—W1—O4iii88.6 (3)O4iii—W1—Re1—O3159.5 (3)
W2—O1C—W1—O4iii179.3 (4)O2iii—W1—Re1—O377.3 (4)
Re1—O1C—W1—O4iii91.5 (4)O2—W1—Re1—O30.1 (3)
V1i—O1C—W1—O4iii0.5 (3)O1C—W1—Re1—O379.2 (4)
Re1i—O1C—W1—O4iii0.5 (3)Re1i—W1—Re1—O3134.1 (2)
W2i—O1C—W1—O2iii1.5 (3)O3E—W1—Re1—O5101.6 (6)
W2—O1C—W1—O2iii89.2 (4)O4—W1—Re1—O599.2 (6)
Re1—O1C—W1—O2iii178.3 (4)O4iii—W1—Re1—O51.5 (4)
V1i—O1C—W1—O2iii90.7 (3)O2iii—W1—Re1—O583.7 (4)
Re1i—O1C—W1—O2iii90.7 (3)O2—W1—Re1—O5161.1 (4)
W2i—O1C—W1—O289.2 (4)O1C—W1—Re1—O581.8 (4)
W2—O1C—W1—O21.5 (3)Re1i—W1—Re1—O526.9 (3)
Re1—O1C—W1—O290.7 (3)O3E—W1—Re1—O1C176.6 (6)
V1i—O1C—W1—O2178.3 (4)O4—W1—Re1—O1C179.0 (6)
Re1i—O1C—W1—O2178.3 (4)O4iii—W1—Re1—O1C80.3 (4)
W2i—O1C—W1—Re1i89.14 (5)O2iii—W1—Re1—O1C1.9 (4)
W2—O1C—W1—Re1i179.9 (4)O2—W1—Re1—O1C79.3 (4)
Re1—O1C—W1—Re1i91.0 (4)Re1i—W1—Re1—O1C54.9 (3)
V1i—O1C—W1—Re1i0.0O3E—W1—Re1—W1i179.0 (5)
W2i—O1C—W1—Re1179.9 (4)O4—W1—Re1—W1i178.6 (5)
W2—O1C—W1—Re189.14 (5)O4iii—W1—Re1—W1i77.9 (2)
V1i—O1C—W1—Re191.0 (4)O2iii—W1—Re1—W1i4.3 (3)
Re1i—O1C—W1—Re191.0 (4)O2—W1—Re1—W1i81.7 (3)
Re1—O3—W2—O276.4 (2)O1C—W1—Re1—W1i2.4 (3)
Re1—O3—W2—O2iv76.4 (2)Re1i—W1—Re1—W1i52.53 (4)
W2i—O1—W2—O276.5 (3)O3E—W1—Re1—W2122.8 (5)
W2i—O1—W2—O2iv76.5 (3)O4—W1—Re1—W2125.2 (5)
W1—O2—W2—O2E177.3 (8)O4iii—W1—Re1—W2134.1 (2)
W1—O2—W2—O376.5 (6)O2iii—W1—Re1—W251.9 (3)
W1—O2—W2—O178.0 (6)O2—W1—Re1—W225.5 (3)
W1—O2—W2—O2iv1.5 (16)O1C—W1—Re1—W253.8 (3)
W1—O2—W2—O1C2.0 (4)Re1i—W1—Re1—W2108.71 (2)
W1—O2—W2—Re144.6 (4)O2—W2—Re1—O1E100.0 (3)
W1—O1C—W2—O21.5 (3)O2iv—W2—Re1—O1E100.0 (3)
W1i—O1C—W2—O2178.2 (4)O2E—W2—Re1—O4100.0 (2)
Re1—O1C—W2—O289.9 (3)O3—W2—Re1—O4100.0 (2)
W1—O1C—W2—O2iv178.2 (4)O1—W2—Re1—O480.0 (2)
W1i—O1C—W2—O2iv1.5 (3)O2—W2—Re1—O40.1 (3)
Re1—O1C—W2—O2iv89.9 (3)O2iv—W2—Re1—O4160.0 (3)
W1—O4—Re1—O1E177.7 (7)O1C—W2—Re1—O480.0 (2)
W1—O4—Re1—O4iv4.3 (15)O2E—W2—Re1—O4iv100.0 (2)
W1—O4—Re1—O377.4 (5)O3—W2—Re1—O4iv100.0 (2)
W1—O4—Re1—O576.8 (6)O1—W2—Re1—O4iv80.0 (2)
W1—O4—Re1—O1C0.7 (4)O2—W2—Re1—O4iv160.0 (3)
W1—O4—Re1—W1i1.6 (6)O2iv—W2—Re1—O4iv0.1 (3)
W1—O4—Re1—W246.3 (4)O1C—W2—Re1—O4iv80.0 (2)
W2—O3—Re1—O477.1 (2)O2E—W2—Re1—O30.000 (2)
W2—O3—Re1—O4iv77.1 (2)O1—W2—Re1—O3180.000 (2)
W2—O3—Re1—W1i45.92 (4)O2—W2—Re1—O3100.0 (3)
W2—O3—Re1—W145.92 (4)O2iv—W2—Re1—O3100.0 (3)
V1i—O5—Re1—O477.6 (2)O1C—W2—Re1—O3180.000 (2)
Re1i—O5—Re1—O477.6 (2)O2E—W2—Re1—O5180.000 (1)
V1i—O5—Re1—O4iv77.6 (2)O3—W2—Re1—O5180.000 (1)
Re1i—O5—Re1—O4iv77.6 (2)O1—W2—Re1—O50.000 (1)
V1i—O5—Re1—W1i46.26 (5)O2—W2—Re1—O580.0 (3)
Re1i—O5—Re1—W1i46.26 (5)O2iv—W2—Re1—O580.0 (3)
V1i—O5—Re1—W146.26 (5)O1C—W2—Re1—O50.000 (1)
Re1i—O5—Re1—W146.26 (5)O2E—W2—Re1—O1C180.0
W1—O1C—Re1—O40.5 (3)O3—W2—Re1—O1C180.0
W1i—O1C—Re1—O4177.2 (4)O1—W2—Re1—O1C0.0
V1i—O1C—Re1—O488.9 (3)O2—W2—Re1—O1C80.0 (3)
Re1i—O1C—Re1—O488.9 (3)O2iv—W2—Re1—O1C80.0 (3)
W1—O1C—Re1—O4iv177.2 (4)O2E—W2—Re1—W1i125.752 (18)
W1i—O1C—Re1—O4iv0.5 (3)O3—W2—Re1—W1i125.752 (18)
V1i—O1C—Re1—O4iv88.9 (3)O1—W2—Re1—W1i54.248 (18)
Re1i—O1C—Re1—O4iv88.9 (3)O2—W2—Re1—W1i134.3 (3)
W1—O1C—Re1—O588.3 (2)O2iv—W2—Re1—W1i25.8 (3)
W1i—O1C—Re1—O588.3 (2)O1C—W2—Re1—W1i54.248 (18)
W1—O1C—Re1—W1i176.7 (4)O2E—W2—Re1—W1125.752 (18)
V1i—O1C—Re1—W1i88.3 (2)O3—W2—Re1—W1125.752 (18)
Re1i—O1C—Re1—W1i88.3 (2)O1—W2—Re1—W154.248 (18)
W1i—O1C—Re1—W1176.7 (4)O2—W2—Re1—W125.8 (3)
V1i—O1C—Re1—W188.3 (2)O2iv—W2—Re1—W1134.3 (3)
Re1i—O1C—Re1—W188.3 (2)O1C—W2—Re1—W154.248 (18)
W1—O1C—Re1—W291.7 (2)
Symmetry codes: (i) x+1/2, y, z; (ii) x, y+1, z; (iii) x, y, z; (iv) x+1/2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.862.403.078 (14)136
N1—H1A···O1E0.862.583.184 (14)129
N2—H2A···O3v0.862.393.181 (12)152
O1W—H1W1···O1E0.812.503.188 (18)144
O2W—H1W2···O3Evi0.852.102.836 (18)144
O4W—H1W4···O2W0.851.872.40 (7)119
O4W—H2W4···O4Wvii0.852.312.65 (15)106
Symmetry codes: (v) x+1/2, y, z+1; (vi) x+1, y, z+1; (vii) x+1, y, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···O1W0.862.403.078 (14)136
N1—H1A···O1E0.862.583.184 (14)129
N2—H2A···O3i0.862.393.181 (12)152
O1W—H1W1···O1E0.812.503.188 (18)144
O2W—H1W2···O3Eii0.852.102.836 (18)144
O4W—H1W4···O2W0.851.872.40 (7)119
O4W—H2W4···O4Wiii0.852.312.65 (15)106
Symmetry codes: (i) x+1/2, y, z+1; (ii) x+1, y, z+1; (iii) x+1, y, z+2.
Acknowledgements top

No acknowledgements required

references
References top

Bannani, F., Driss, H., Thouvenot, R. & Debbabi, M. (2007). J. Chem. Crystallogr. 37, 37–48.

Besecker, C. J., Klemperer, W. G. & Day, V. W. (1982). J. Am. Chem. Soc. 104, 6158–6159.

Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.

Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.

Chen, Y. G., Gong, J. & Qu, L. Y. (2004). Coord. Chem. Rev. 248, 245–260.

Domaille, P. J. (1984). J. Am. Chem. Soc. 106, 7677–7687.

Enraf–Nonius (1994). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.

Fedotov, M. A. & Maksimovskaya, R. I. (2006). J. Struct. Chem. 47, 952–978.

Harms, K. & Wocadlo, S. (1996). XCAD4. University of Marburg, Germany.

Leparulo-Loftus, M. A. & Pope, M. T. (1987). Inorg. Chem. 26, 2112–2120.

Lindqvist, I. (1953). Ark. Kemi 5, 247–250.

Meng, F. X., Liu, K. & Chen, Y. G. (2006). Chin. J. Struct. Chem. 25, 837–843.

Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. 30, 34–38.

Pope, M. T. & Müller, A. (1994). Polyoxometalates: from platonic solids to anti-retroviral activity. Dordrecht: Kluwer Academic Publishers.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Wang, C., Weng, L., Ren, Y., Du, C., Yue, B., Gu, M. & He, H. (2011). Z. Anorg. Allg. Chem. 637, 472–477.

Wang, X., Zhou, B., Zhong, C. & Ji, M. (2006). Cryst. Res. Technol. 41, 874–879.