supplementary materials


sj5363 scheme

Acta Cryst. (2013). E69, o1743-o1744    [ doi:10.1107/S1600536813029747 ]

Raltegravir monohydrate

T. S. Yamuna, J. P. Jasinski, B. J. Anderson, H. S. Yathirajan and M. Kaur

Abstract top

The hydrated title compound [systematic name: N-(4-fluoro­benz­yl)-5-hy­droxy-1-methyl-2-{1-methyl-1-[(5-methyl-1,3,4-oxa­diazol-2-ylcarbon­yl)amino]­eth­yl}-6-oxo-1,6-di­hydro­pyrimidine-4-carb­oxamide monohydrate], C20H21FN6O5·H2O, is recognised as the first HIV integrase inhibitor. In the mol­ecule, the dihedral angles between the mean planes of the pyrimidine ring and the phenyl and oxa­diazole rings are 72.0 (1) and 61.8 (3)°, respectively. The mean plane of the oxa­diazole ring is twisted by 15.6 (3)° from that of the benzene ring, while the mean plane of amide group bound to the oxadiaole ring is twisted by 18.8 (3)° from its mean plane. Intra­molecular O-H...O and C-H...N hydrogen bonds are observed in the mol­ecule. The crystal packing features O-H...O hydrogen bonds, which include bifurcated O-H...(O,O) hydrogen bonds from one H atom of the water mol­ecule. In addition, N-H...O hydrogen bonds are observed involving the two amide groups. These inter­actions link the mol­ecules into chains along [010].

Comment top

Raltegravir (systematic name:5-hydroxy-1-methyl-2-{1-methyl-1-[(5-methyl-[1,3,4]oxadiazole-2-carbonyl)amino]ethyl}-6-oxo-1,6-dihydropyrimidine-4-carboxylic acid 4-fluorobenzylamide) monohydrate is the first in a novel class of HIV-1 integrase strand-transfer inhibitors with potent antiretroviral activity (Savarino, 2006; Hicks & Gulick, 2009; Evering & Markowitz, 2008; Temesgen & Siraj, 2008). It inhibits the action of the HIV-1-specific enzyme that is responsible for the insertion of viral complimentary DNA into the host genome (Croxtall & Keam, 2009). It is also found to be a generally well tolerated antiretroviral agent that may play an important role in the treatment of patients harboring resistance to other antiretroviral drugs (Cocohoba & Dong, 2008). A review of the pharmacokinetics, pharmacology and clinical studies of Raltegravir has been published (Burger, 2010). The crystal structures of some related compounds, viz., 5-[(4,6-dimethylpyrimidin-2- ylsulfanyl)methyl]-3-(morpholinomethyl)-1,3,4-oxadiazole-2(3H)-thione (Thiruvalluvar et al., 2007), methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy-6-methoxypyrimidine- 4-carboxylate (Fun et al., 2011), methyl 2-(2-{[(benzyloxy)carbonyl]- amino}propan-2-yl)-5-hydroxy-6-oxo-1,6-dihydropyrimidine-4-carboxylate (Shang, Ha et al., 2011), methyl 2-(2-{[(benzyloxy)carbonyl]amino}propan-2-yl)- 5-hydroxy-6-methoxypyrimidine-4-carboxylate (Shang, Qi et al., 2011) and methyl 2-[2-(benzyloxycarbonylamino)propan-2-yl]-5-hydroxy-1-methyl-6-oxo- 1,6-dihydro pyrimidine-4-carboxylate (Shang et al., 2012) have been reported. In view of the importance of Raltegravir, this paper reports the crystal structure of (I), C20H21FN6O5. H2O.

In the title compound, (I), the dihedral angles between the mean planes of the pyrimidine ring and the phenyl and oxadiazole rings are 72.0 (1)° and 61.8 (3)° respectively (Fig. 1). The mean plane of the oxadiazole ring is twisted by 15.63° from that of the phenyl ring. In addition, the mean plane of the N1–C14–O2 amide group adjacent to the oxadiazole ring is twisted by 18.8 (3)° from the mean plane of the oxidiazole ring. Bond lengths are within normal ranges (Allen et al., 1987). Intramolecular O—H···O and C—H···N hydrogen bonds are observed in the molecule (Table. 1).

The crystal packing is stabilized by intermolecular O—H···O hydrogen bonds which include bifurcated O1W–H1WA···O3 and O1W–H1WA···O4 hydrogen bonds from the H1WA atom of the water molecule. In addition, intermolecular N1–H1···O5 and N4–H4A···O1W hydrogen bonds involving the two amide groups are also observed. These interactions link the molecules into chains along [0 1 0].

Related literature top

For general background to and pharmacological properties of Raltegravir, see: Burger (2010); Cocohoba & Dong (2008); Croxtall & Keam (2009); Evering & Markowitz (2008); Hicks & Gulick (2009); Savarino (2006); Temesgen & Siraj (2008). For related structures, see: Fun et al. (2011); Shang et al. (2012); Shang, Ha et al. (2011); Shang, Qi et al. (2011); Thiruvalluvar et al. (2007). For standard bond lengths, see: Allen et al. (1987).

Experimental top

Raltegravir (CAS No. 518048-05-0) (0.2 g) was dissolved in a 1:1:1(v/v) mixture of methanol, dimethyl sulfoxide and dimethyl formamide at 308 K and left for slow evaporation. Crystals suitable for X-ray work were obtained after a few months (m.p.: 383–388 K).

Refinement top

H1WA and H1WB were located in a difference map and refined isotropically. All other H atoms were placed in their calculated positions and then refined using a riding model with Atom—H lengths of 0.95Å (CH), 0.99Å (CH2), 0.98Å (CH3), 0.88Å (NH) or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 (CH, CH2, NH) or 1.5 (CH3, OH, OH2) times Ueq of the parent atom. Idealised Me and tetrahedral OH (O4(H4))were refined as rotating groups. The highest peak (-0.783) in the final difference map is located 1.02 Å from O1.

Computing details top

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO (Agilent, 2012); data reduction: CrysAlis RED (Agilent, 2012); program(s) used to solve structure: SUPERFLIP (Palatinus & Chapuis, 2007); program(s) used to refine structure: SHELXL2012 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

Figures top
[Figure 1] Fig. 1. ORTEP drawing of (I) (C20H21FN6O5. H2O) showing the labeling scheme with 30% probability displacement ellipsoids. Dashed lines indicate intramolecular O4—H4···O5, C20—H20C···N1 and intermolecular O1W—H1WB···O2 hydrogen bonds in the asymmentric unit.
[Figure 2] Fig. 2. Molecular packing for (I) viewed along the a axis. Dashed lines indicate intermolecular N—H···O and O—H···O hydrogen bonds. H atoms not involved in hydrogen bonding have been removed for clarity.
N-(4-fluorobenzyl)-5-hydroxy-1-methyl-2-{1-methyl-1-[(5-methyl-1,3,4-oxadiazol-2-ylcarbonyl)amino]ethyl}-6-oxo-1,6-dihydropyrimidine-4-carboxamide monohydrate top
Crystal data top
C20H21FN6O5·H2OZ = 2
Mr = 462.44F(000) = 484
Triclinic, P1Dx = 1.452 Mg m3
a = 8.3860 (6) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.8610 (9) ÅCell parameters from 3215 reflections
c = 12.1102 (9) Åθ = 3.0–32.9°
α = 110.481 (7)°µ = 0.12 mm1
β = 108.093 (7)°T = 173 K
γ = 92.329 (6)°Irregular, colourless
V = 1057.44 (15) Å30.44 × 0.32 × 0.26 mm
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7007 independent reflections
Radiation source: Enhance (Mo) X-ray Source5042 reflections with I > 2σ(I)
Detector resolution: 16.0416 pixels mm-1Rint = 0.025
ω scansθmax = 33.0°, θmin = 3.1°
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
h = 1212
Tmin = 0.890, Tmax = 1.000k = 1417
12734 measured reflectionsl = 1718
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.206 w = 1/[σ2(Fo2) + (0.0974P)2 + 0.6433P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
7007 reflectionsΔρmax = 0.78 e Å3
306 parametersΔρmin = 0.39 e Å3
0 restraints
Crystal data top
C20H21FN6O5·H2Oγ = 92.329 (6)°
Mr = 462.44V = 1057.44 (15) Å3
Triclinic, P1Z = 2
a = 8.3860 (6) ÅMo Kα radiation
b = 11.8610 (9) ŵ = 0.12 mm1
c = 12.1102 (9) ÅT = 173 K
α = 110.481 (7)°0.44 × 0.32 × 0.26 mm
β = 108.093 (7)°
Data collection top
Agilent Xcalibur (Eos, Gemini)
diffractometer
7007 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO and CrysAlis RED; Agilent, 2012)
5042 reflections with I > 2σ(I)
Tmin = 0.890, Tmax = 1.000Rint = 0.025
12734 measured reflectionsθmax = 33.0°
Refinement top
R[F2 > 2σ(F2)] = 0.067H-atom parameters constrained
wR(F2) = 0.206Δρmax = 0.78 e Å3
S = 1.03Δρmin = 0.39 e Å3
7007 reflectionsAbsolute structure: ?
306 parametersAbsolute structure parameter: ?
0 restraintsRogers parameter: ?
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F11.1554 (2)0.33688 (15)1.31637 (13)0.0578 (4)
O10.7785 (2)0.36533 (14)0.09901 (14)0.0412 (4)
O20.7121 (2)0.44719 (13)0.32679 (14)0.0398 (4)
O30.50567 (19)0.13326 (13)0.34626 (15)0.0355 (3)
O40.76855 (19)0.16476 (12)0.52110 (14)0.0320 (3)
H40.85700.16290.57890.048*
O51.04993 (19)0.05743 (13)0.70762 (13)0.0315 (3)
N10.7540 (2)0.26143 (14)0.33868 (14)0.0273 (3)
H10.76610.18750.29500.033*
N20.62443 (18)0.06543 (13)0.40189 (13)0.0221 (3)
N30.87875 (19)0.15547 (13)0.57317 (13)0.0228 (3)
N41.1487 (2)0.14234 (15)0.76091 (14)0.0282 (3)
H4A1.13340.20690.74140.034*
N50.7269 (2)0.17737 (16)0.08576 (16)0.0347 (4)
N60.7475 (3)0.17321 (18)0.02828 (18)0.0427 (5)
C10.7546 (2)0.28635 (15)0.46715 (16)0.0238 (3)
C20.7531 (2)0.16307 (15)0.48264 (15)0.0211 (3)
C30.6221 (2)0.04688 (16)0.41474 (17)0.0245 (3)
C40.7677 (2)0.05480 (15)0.51363 (16)0.0237 (3)
C50.8866 (2)0.04642 (15)0.58924 (15)0.0222 (3)
C61.0360 (2)0.04108 (16)0.69173 (16)0.0247 (3)
C71.2983 (3)0.1521 (2)0.86874 (18)0.0331 (4)
H7A1.39510.20620.87310.040*
H7B1.33060.07050.85680.040*
C81.2642 (2)0.20230 (17)0.99030 (17)0.0271 (4)
C91.1883 (3)0.12534 (17)1.02977 (18)0.0304 (4)
H91.16190.04010.98100.036*
C101.1498 (3)0.17008 (19)1.13923 (19)0.0333 (4)
H101.09590.11701.16520.040*
C111.1919 (3)0.2928 (2)1.20832 (18)0.0370 (5)
C121.2710 (4)0.3723 (2)1.1741 (2)0.0527 (7)
H121.30070.45701.22520.063*
C131.3067 (4)0.3264 (2)1.0637 (2)0.0438 (5)
H131.36040.38001.03830.053*
C140.7364 (3)0.34282 (17)0.28320 (18)0.0297 (4)
C150.7465 (3)0.28953 (17)0.15403 (18)0.0312 (4)
C160.7766 (3)0.2857 (2)0.0153 (2)0.0388 (5)
C170.8092 (5)0.3338 (3)0.1049 (3)0.0595 (7)
H17A0.71480.37410.13490.089*
H17B0.81900.26640.17630.089*
H17C0.91530.39280.06280.089*
C180.6015 (3)0.34431 (18)0.4921 (2)0.0330 (4)
H18A0.62080.43110.50630.049*
H18B0.58850.33580.56660.049*
H18C0.49790.30290.41920.049*
C190.9184 (3)0.37382 (17)0.56034 (19)0.0319 (4)
H19A1.01680.33750.54640.048*
H19B0.92340.38890.64640.048*
H19C0.91980.45120.54800.048*
C200.4769 (2)0.06994 (17)0.29878 (17)0.0276 (4)
H20A0.38370.09350.33000.041*
H20B0.43960.01070.23020.041*
H20C0.50980.13000.26770.041*
O1W0.6377 (4)0.63744 (18)0.2332 (2)0.0697 (7)
H1WA0.62550.69000.29770.105*
H1WB0.66300.57410.24780.105*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.0781 (11)0.0643 (10)0.0310 (7)0.0282 (8)0.0259 (7)0.0103 (7)
O10.0611 (10)0.0302 (7)0.0326 (7)0.0038 (7)0.0138 (7)0.0148 (6)
O20.0591 (10)0.0230 (7)0.0362 (8)0.0116 (6)0.0114 (7)0.0141 (6)
O30.0303 (7)0.0291 (7)0.0434 (8)0.0000 (5)0.0075 (6)0.0146 (6)
O40.0379 (7)0.0250 (6)0.0390 (8)0.0094 (5)0.0142 (6)0.0177 (6)
O50.0391 (7)0.0331 (7)0.0319 (7)0.0168 (6)0.0152 (6)0.0199 (6)
N10.0373 (8)0.0221 (7)0.0258 (7)0.0095 (6)0.0117 (6)0.0117 (6)
N20.0222 (6)0.0234 (7)0.0214 (6)0.0066 (5)0.0083 (5)0.0087 (5)
N30.0263 (7)0.0235 (7)0.0208 (6)0.0081 (5)0.0089 (5)0.0099 (5)
N40.0308 (8)0.0335 (8)0.0224 (7)0.0104 (6)0.0076 (6)0.0139 (6)
N50.0431 (10)0.0295 (8)0.0276 (8)0.0060 (7)0.0050 (7)0.0127 (6)
N60.0521 (11)0.0388 (10)0.0306 (9)0.0076 (8)0.0060 (8)0.0128 (7)
C10.0277 (8)0.0210 (7)0.0231 (7)0.0080 (6)0.0076 (6)0.0096 (6)
C20.0237 (7)0.0206 (7)0.0209 (7)0.0070 (6)0.0100 (6)0.0078 (6)
C30.0261 (8)0.0239 (8)0.0275 (8)0.0064 (6)0.0133 (7)0.0105 (6)
C40.0284 (8)0.0235 (8)0.0264 (8)0.0099 (6)0.0154 (7)0.0123 (6)
C50.0267 (8)0.0247 (8)0.0201 (7)0.0104 (6)0.0115 (6)0.0109 (6)
C60.0308 (8)0.0305 (8)0.0210 (7)0.0140 (7)0.0146 (7)0.0133 (6)
C70.0287 (9)0.0455 (11)0.0261 (8)0.0126 (8)0.0067 (7)0.0166 (8)
C80.0263 (8)0.0295 (9)0.0225 (8)0.0076 (7)0.0030 (6)0.0109 (7)
C90.0356 (9)0.0258 (8)0.0255 (8)0.0037 (7)0.0072 (7)0.0078 (7)
C100.0339 (10)0.0377 (10)0.0282 (9)0.0043 (8)0.0091 (8)0.0139 (8)
C110.0439 (11)0.0408 (11)0.0233 (8)0.0162 (9)0.0095 (8)0.0095 (8)
C120.086 (2)0.0259 (10)0.0368 (12)0.0083 (11)0.0186 (12)0.0033 (9)
C130.0619 (15)0.0297 (10)0.0376 (11)0.0005 (10)0.0146 (10)0.0137 (9)
C140.0366 (9)0.0243 (8)0.0270 (8)0.0046 (7)0.0059 (7)0.0129 (7)
C150.0365 (10)0.0267 (9)0.0292 (9)0.0036 (7)0.0054 (7)0.0146 (7)
C160.0408 (11)0.0407 (11)0.0289 (9)0.0022 (9)0.0056 (8)0.0126 (8)
C170.080 (2)0.0575 (16)0.0426 (13)0.0024 (14)0.0169 (13)0.0253 (12)
C180.0334 (9)0.0293 (9)0.0374 (10)0.0141 (7)0.0147 (8)0.0109 (8)
C190.0322 (9)0.0241 (8)0.0343 (9)0.0027 (7)0.0041 (8)0.0118 (7)
C200.0241 (8)0.0307 (9)0.0265 (8)0.0061 (7)0.0060 (7)0.0113 (7)
O1W0.121 (2)0.0388 (10)0.0519 (11)0.0309 (12)0.0242 (13)0.0241 (9)
Geometric parameters (Å, º) top
F1—C111.364 (2)C7—H7B0.9900
O1—C151.355 (2)C7—C81.505 (3)
O1—C161.371 (3)C8—C91.384 (3)
O2—C141.217 (2)C8—C131.389 (3)
O3—C31.229 (2)C9—H90.9500
O4—H40.8400C9—C101.389 (3)
O4—C41.339 (2)C10—H100.9500
O5—C61.253 (2)C10—C111.366 (3)
N1—H10.8800C11—C121.376 (4)
N1—C11.477 (2)C12—H120.9500
N1—C141.345 (2)C12—C131.388 (4)
N2—C21.383 (2)C13—H130.9500
N2—C31.394 (2)C14—C151.500 (3)
N2—C201.478 (2)C16—C171.476 (4)
N3—C21.296 (2)C17—H17A0.9800
N3—C51.375 (2)C17—H17B0.9800
N4—H4A0.8800C17—H17C0.9800
N4—C61.323 (3)C18—H18A0.9800
N4—C71.469 (2)C18—H18B0.9800
N5—N61.429 (3)C18—H18C0.9800
N5—C151.268 (3)C19—H19A0.9800
N6—C161.291 (3)C19—H19B0.9800
C1—C21.538 (2)C19—H19C0.9800
C1—C181.542 (3)C20—H20A0.9800
C1—C191.529 (3)C20—H20B0.9800
C3—C41.454 (2)C20—H20C0.9800
C4—C51.357 (3)O1W—H1WA0.8500
C5—C61.487 (2)O1W—H1WB0.8504
C7—H7A0.9900
C15—O1—C16102.68 (16)C9—C10—H10121.1
C4—O4—H4109.5C11—C10—C9117.9 (2)
C1—N1—H1117.4C11—C10—H10121.1
C14—N1—H1117.4F1—C11—C10118.0 (2)
C14—N1—C1125.12 (15)F1—C11—C12119.3 (2)
C2—N2—C3121.45 (14)C10—C11—C12122.7 (2)
C2—N2—C20124.45 (14)C11—C12—H12120.6
C3—N2—C20114.08 (14)C11—C12—C13118.7 (2)
C2—N3—C5119.27 (15)C13—C12—H12120.6
C6—N4—H4A118.4C8—C13—H13119.9
C6—N4—C7123.12 (16)C12—C13—C8120.2 (2)
C7—N4—H4A118.4C12—C13—H13119.9
C15—N5—N6106.18 (17)O2—C14—N1126.78 (19)
C16—N6—N5105.55 (18)O2—C14—C15121.48 (17)
N1—C1—C2106.42 (13)N1—C14—C15111.74 (16)
N1—C1—C18113.17 (14)O1—C15—C14119.28 (17)
N1—C1—C19108.21 (15)N5—C15—O1113.46 (18)
C2—C1—C18110.32 (15)N5—C15—C14127.26 (17)
C19—C1—C2110.05 (14)O1—C16—C17119.6 (2)
C19—C1—C18108.63 (15)N6—C16—O1112.1 (2)
N2—C2—C1120.93 (14)N6—C16—C17128.3 (2)
N3—C2—N2122.32 (15)C16—C17—H17A109.5
N3—C2—C1116.75 (15)C16—C17—H17B109.5
O3—C3—N2122.18 (16)C16—C17—H17C109.5
O3—C3—C4122.56 (16)H17A—C17—H17B109.5
N2—C3—C4115.25 (15)H17A—C17—H17C109.5
O4—C4—C3114.82 (16)H17B—C17—H17C109.5
O4—C4—C5126.23 (16)C1—C18—H18A109.5
C5—C4—C3118.95 (15)C1—C18—H18B109.5
N3—C5—C6117.28 (15)C1—C18—H18C109.5
C4—C5—N3122.65 (15)H18A—C18—H18B109.5
C4—C5—C6120.04 (15)H18A—C18—H18C109.5
O5—C6—N4123.62 (16)H18B—C18—H18C109.5
O5—C6—C5119.27 (17)C1—C19—H19A109.5
N4—C6—C5117.11 (15)C1—C19—H19B109.5
N4—C7—H7A109.3C1—C19—H19C109.5
N4—C7—H7B109.3H19A—C19—H19B109.5
N4—C7—C8111.60 (16)H19A—C19—H19C109.5
H7A—C7—H7B108.0H19B—C19—H19C109.5
C8—C7—H7A109.3N2—C20—H20A109.5
C8—C7—H7B109.3N2—C20—H20B109.5
C9—C8—C7120.34 (17)N2—C20—H20C109.5
C9—C8—C13119.05 (19)H20A—C20—H20B109.5
C13—C8—C7120.60 (19)H20A—C20—H20C109.5
C8—C9—H9119.3H20B—C20—H20C109.5
C8—C9—C10121.39 (18)H1WA—O1W—H1WB109.4
C10—C9—H9119.3
F1—C11—C12—C13179.7 (2)C4—C5—C6—N4178.97 (16)
O2—C14—C15—O119.2 (3)C5—N3—C2—N20.9 (2)
O2—C14—C15—N5160.2 (2)C5—N3—C2—C1178.19 (14)
O3—C3—C4—O42.5 (3)C6—N4—C7—C894.3 (2)
O3—C3—C4—C5176.74 (17)C7—N4—C6—O53.5 (3)
O4—C4—C5—N3178.19 (16)C7—N4—C6—C5177.18 (16)
O4—C4—C5—C60.3 (3)C7—C8—C9—C10177.60 (18)
N1—C1—C2—N257.7 (2)C7—C8—C13—C12178.4 (2)
N1—C1—C2—N3121.37 (16)C8—C9—C10—C111.1 (3)
N1—C14—C15—O1161.84 (18)C9—C8—C13—C120.9 (4)
N1—C14—C15—N518.8 (3)C9—C10—C11—F1179.51 (18)
N2—C3—C4—O4176.77 (15)C9—C10—C11—C120.4 (3)
N2—C3—C4—C54.0 (2)C10—C11—C12—C131.2 (4)
N3—C5—C6—O5178.36 (15)C11—C12—C13—C80.5 (4)
N3—C5—C6—N41.0 (2)C13—C8—C9—C101.8 (3)
N4—C7—C8—C985.1 (2)C14—N1—C1—C2172.40 (17)
N4—C7—C8—C1394.3 (2)C14—N1—C1—C1851.1 (2)
N5—N6—C16—O10.5 (3)C14—N1—C1—C1969.4 (2)
N5—N6—C16—C17179.3 (3)C15—O1—C16—N60.3 (3)
N6—N5—C15—O10.2 (2)C15—O1—C16—C17179.2 (2)
N6—N5—C15—C14179.65 (19)C15—N5—N6—C160.4 (2)
C1—N1—C14—O22.9 (3)C16—O1—C15—N50.1 (2)
C1—N1—C14—C15178.28 (17)C16—O1—C15—C14179.43 (18)
C2—N2—C3—O3177.59 (16)C18—C1—C2—N265.4 (2)
C2—N2—C3—C43.1 (2)C18—C1—C2—N3115.50 (17)
C2—N3—C5—C40.1 (2)C19—C1—C2—N2174.73 (15)
C2—N3—C5—C6178.05 (15)C19—C1—C2—N34.3 (2)
C3—N2—C2—N30.8 (2)C20—N2—C2—N3178.83 (16)
C3—N2—C2—C1179.79 (15)C20—N2—C2—C12.2 (2)
C3—C4—C5—N32.7 (3)C20—N2—C3—O30.6 (2)
C3—C4—C5—C6179.50 (15)C20—N2—C3—C4178.63 (15)
C4—C5—C6—O50.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.841.882.593 (2)143
O1W—H1WB···O20.852.042.869 (2)164
C20—H20C···N10.982.252.982 (3)130
N1—H1···O5i0.882.232.970 (2)142
N4—H4A···O1Wii0.882.483.074 (3)126
C7—H7A···O1Wii0.992.583.240 (3)124
C10—H10···O5iii0.952.503.393 (3)158
C20—H20A···O4iv0.982.463.394 (2)160
C20—H20B···N6v0.982.503.422 (3)158
O1W—H1WA···O4vi0.852.513.249 (3)146
O1W—H1WA···O3vi0.852.333.013 (3)138
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y, z+2; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4···O50.841.882.593 (2)142.6
O1W—H1WB···O20.852.042.869 (2)164.4
C20—H20C···N10.982.252.982 (3)130.4
N1—H1···O5i0.882.232.970 (2)142.2
N4—H4A···O1Wii0.882.483.074 (3)125.5
C7—H7A···O1Wii0.992.583.240 (3)124.0
C10—H10···O5iii0.952.503.393 (3)157.5
C20—H20A···O4iv0.982.463.394 (2)159.5
C20—H20B···N6v0.982.503.422 (3)157.5
O1W—H1WA···O4vi0.852.513.249 (3)146.4
O1W—H1WA···O3vi0.852.333.013 (3)137.7
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+2, y, z+2; (iv) x+1, y, z+1; (v) x+1, y, z; (vi) x, y+1, z.
Acknowledgements top

TSY thanks the UOM for research facilities. HSY thanks Dr M. T. Swamy, Department of Chemistry, Sambhram Institute of Technology, Bengaluru, India, for a pure sample of the title compound. JPJ acknowledges the NSF–MRI program (grant No. CHE-1039027) for funds to purchase the X-ray diffractometer.

references
References top

Agilent (2012). CrysAlis PRO and CrysAlis RED. Agilent Technologies, Yarnton, England.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Burger, D. M. (2010). Exp. Opin. Drug Metab. Toxicol. 6, 1151–1160.

Cocohoba, J. & Dong, B. J. (2008). Clin. Ther. 30, 1747–1765.

Croxtall, J. D. & Keam, S. J. (2009). Drugs, 69, 1059–1075.

Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.

Evering, T. H. & Markowitz, M. (2008). Exp. Opin. Invest. Drugs, 17, 413–422.

Fun, H.-K., Sumangala, V., Prasad, D. J., Poojary, B. & Chantrapromma, S. (2011). Acta Cryst. E67, o274.

Hicks, C. & Gulick, R. M. (2009). Clin. Infect. Dis. 48, 931–939.

Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.

Savarino, A. (2006). Exp. Opin. Invest. Drugs, 15, 1507-1522.

Shang, Z., Ha, J., Yu, Y. & Zhao, X. (2011). Acta Cryst. E67, o1336.

Shang, Z., Qi, S., Tao, X. & Zhang, G. (2011). Acta Cryst. E67, o1335.

Shang, Z., Tao, X., Ha, J. & Yu, F. (2012). Acta Cryst. E68, o3175.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Temesgen, Z. & Siraj, D. S. (2008). Ther. Clin. Risk Manage. 4, 493-500.

Thiruvalluvar, A., Subramanyam, M., Lingappa, B. & Kalluraya, B. (2007). Acta Cryst. E63, o3425.