organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1789-o1790

13-(N,N-Di­methyl­amino)­micheliolide 0.08-hydrate

aDept. of Pharm. Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA, and bDept. of Chemistry, University of Kentucky, Lexington KY 40506, USA
*Correspondence e-mail: pacrooks@uams.edu

(Received 28 October 2013; accepted 5 November 2013; online 20 November 2013)

The title compound, C17H27NO3·0.08H2O {sytematic name: (3R,3aS,9R,9aS,9bS)-3-[(di­methyl­amino)­meth­yl]-9-hy­droxy-6,9-dimethyl-3,3a,4,5,7,8,9,9a-octa­hydro­azuleno[4,5-b]furan-2(9bH)-one 0.08-hydrate}, exhibits intra­molecular O—H⋯O hydrogen bonding to form a ring of graph-set motif S(6). As well as this intra­molecular hydrogen bond with the lactone-ring O atom, the hy­droxy H atom forms an O—H⋯O hydrogen bond to the low-occupancy partial water mol­ecule [occupancy = 0.078 (2)]. The water mol­ecule is correlated with disorder of the N(CH3)2 group [major–minor occupancy factors are 0.922 (2):0.078 (2)]. The dihedral angle between the mean planes of the trans-fused seven-membered ring and the lactone ring is 4.42 (9)°.

Related literature

For the biological activity of 13-N,N-di­methyl­amino michel­iolide, see: Rodriguez et al. (1976[Rodriguez, E., Towers, G. H. N. & Mitchell, J. C. (1976). Phytochemistry, 15, 1573-1580.]); Sethi et al. (1984[Sethi, V. K., Thappat, R. K., Dhar, K. L. & Atal, C. K. (1984). Planta Med. 50, 364.]); Acosta & Fixher (1993[Acosta, J. & Fixher, N. (1993). J. Nat. Prod. 56, 90-98.]); Zhang et al. (2012[Zhang, Q., Lu, Y., Ding, Y., Zhai, J., Ji, Q., Ma, W., Yang, M., Fan, H., Long, J., Tong, Z., Shi, Y., Jia, Y., Han, B., Zhang, W., Qiu, C., Ma, X., Li, Q., Shi, Q., Zhang, H., Li, D., Zhang, J., Lin, J., Li, L. Y., Gao, Y. & Chen, Y. (2012). J. Med. Chem. 55, 8757-8769.]). For the crystal structure of a similar mol­ecule, see: Acosta et al. (1991[Acosta, J. C., Fronczek, F. R. & Fischer, N. H. (1991). Acta Cryst. C47, 2702-2704.]). The structure was checked with PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and with an R-tensor (Parkin, 2000[Parkin, S. (2000). Acta Cryst. A56, 157-162.]).

[Scheme 1]

Experimental

Crystal data
  • C17H27NO3·0.08H2O

  • Mr = 295.01

  • Orthorhombic, P 21 21 21

  • a = 9.1329 (2) Å

  • b = 10.5227 (2) Å

  • c = 16.7194 (3) Å

  • V = 1606.78 (5) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 90 K

  • 0.18 × 0.16 × 0.12 mm

Data collection
  • Bruker X8 Proteum diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008a[Sheldrick, G. M. (2008a). Acta Cryst. A64, 112-122.]) Tmin = 0.854, Tmax = 0.942

  • 20070 measured reflections

  • 2925 independent reflections

  • 2908 reflections with I > 2σ(I)

  • Rint = 0.032

Refinement
  • R[F2 > 2σ(F2)] = 0.025

  • wR(F2) = 0.067

  • S = 1.07

  • 2925 reflections

  • 211 parameters

  • 41 restraints

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.13 e Å−3

  • Absolute structure: Flack parameter determined using 1227 quotients [(I+)−(I)]/[(I+)+(I)] (Parsons et al., 2013[Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249-259.])

  • Absolute structure parameter: −0.01 (3)

Table 1
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3⋯O2 0.84 2.35 2.9578 (15) 129
O1W—H1W1⋯O3i 0.84 2.16 2.845 (12) 139
Symmetry code: (i) [-x+{\script{1\over 2}}, -y+1, z-{\script{1\over 2}}].

Data collection: APEX2 (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2006[Bruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]); molecular graphics: XP in SHELXTL (Sheldrick, 2008b[Sheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.]); software used to prepare material for publication: SHELXL2013.

Supporting information


Comment top

Micheliolide (MCL) is a natural product extracted from the plant Michelia champaca. MCL belongs to the class of guaianolide sesquiterpene lactones, which are used for the treatment of cancer (Sethi et al. 1984). The exocyclic double bond in such sesquiterpenes is believed to be responsible for their biological properties because of its exceptional chemical reactivity with nucleophilic groups (Rodriguez et al. 1976). The synthesis of MCL was first reported by Sethi et al. (1984) and its crystal structure was described by Acosta et al. (1991). Recently, the N,N-dimethyl amino analog of micheliolide was reported as a potent anti-leukemic agent (Zhang et al. 2012).

The N,N-dimethyl amino analog of micheliolide was synthesized as described by Zhang et al. (2012). Recrystallization of the compound from hexanes gave colorless needles that were suitable for X-ray analysis. The title molecule, Fig. 1, contains a central seven-membered carbocyclic ring fused to a 5-membered carbocylic ring and a trans lactone ring. The two five membered rings are in half-chair conformations, as reported in the literature (Acosta et al., 1991). The X-ray studies revealed that the title compound exhibits an O—H···O intramolecular hydrogen bond between the hydroxyl group and the lactone ring oxygen atom. The structure contains a low occupancy [7.8 (2)% occupancy] partial water molecule and a small amount of correlated disorder of the N(CH3)2 group. The bridge between the seven-membered ring and the lactone ring is trans, giving a dihedral angle between the mean planes of the rings of 4.42 (9)°.

Related literature top

For the biological activity of 13-N,N-dimethylamino micheliolide, see: Rodriguez et al. (1976); Sethi et al. (1984); Acosta & Fixher (1993); Zhang et al. (2012). For the crystal structure of a similar molecule, see: Acosta et al. (1991). The structure was checked with PLATON (Spek, 2009) and with an R-tensor (Parkin, 2000).

Experimental top

The title compound was prepared by the reported literature procedure (Zhang et al., 2012) and recrystallization from hexanes gave colorless needles suitable for X-ray analysis.

Refinement top

H atoms were found in difference Fourier maps and subsequently placed at idealized positions with constrained distances of 0.98 Å (RCH3), 0.99 Å (R2CH2), 1.00 Å (R3CH) and 0.84 Å (OH). Partial occupancy water H atoms were fixed due to the low occupancy.

Uiso(H) values were set to either 1.2Ueq or 1.5Ueq (RCH3, OH) of the attached atom. To ensure satisfactory refinement of disordered groups in the structure, a combination of constraints and restraints were employed. The constraints (SHELXL commands EADP) were used to fix parameters of superimposed or partially overlapping fragments. Restraints (SHELXL commands SAME, SADI, DFIX and RIGU) were used to maintain the integrity of ill-defined or disordered groups.

Computing details top

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT (Bruker, 2006); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008b); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008b); molecular graphics: XP in SHELXTL (Sheldrick, 2008b); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008b).

Figures top
[Figure 1] Fig. 1. A view of the molecule with displacement ellipsoids drawn at the 50% probability level.
(3R,3aS,9R,9aS,9bS)-3-[(Dimethylamino)methyl]-9-hydroxy-6,9-dimethyl-3,3a,4,5,7,8,9,9a-octahydroazuleno[4,5-b]furan-2(9bH)-one 0.08-hydrate top
Crystal data top
C17H27NO3·0.08H2ODx = 1.220 Mg m3
Mr = 295.01Cu Kα radiation, λ = 1.54178 Å
Orthorhombic, P212121Cell parameters from 9518 reflections
a = 9.1329 (2) Åθ = 5.3–68.3°
b = 10.5227 (2) ŵ = 0.66 mm1
c = 16.7194 (3) ÅT = 90 K
V = 1606.78 (5) Å3Block, colourless
Z = 40.18 × 0.16 × 0.12 mm
F(000) = 644
Data collection top
Bruker X8 Proteum
diffractometer
2925 independent reflections
Radiation source: fine-focus rotating anode2908 reflections with I > 2σ(I)
Detector resolution: 5.6 pixels mm-1Rint = 0.032
ϕ and ω scansθmax = 68.3°, θmin = 5.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
h = 108
Tmin = 0.854, Tmax = 0.942k = 1212
20070 measured reflectionsl = 1620
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0378P)2 + 0.270P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
2925 reflectionsΔρmax = 0.18 e Å3
211 parametersΔρmin = 0.13 e Å3
41 restraintsAbsolute structure: Flack parameter determined using 1227 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (3)
Crystal data top
C17H27NO3·0.08H2OV = 1606.78 (5) Å3
Mr = 295.01Z = 4
Orthorhombic, P212121Cu Kα radiation
a = 9.1329 (2) ŵ = 0.66 mm1
b = 10.5227 (2) ÅT = 90 K
c = 16.7194 (3) Å0.18 × 0.16 × 0.12 mm
Data collection top
Bruker X8 Proteum
diffractometer
2925 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2008a)
2908 reflections with I > 2σ(I)
Tmin = 0.854, Tmax = 0.942Rint = 0.032
20070 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.18 e Å3
S = 1.07Δρmin = 0.13 e Å3
2925 reflectionsAbsolute structure: Flack parameter determined using 1227 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
211 parametersAbsolute structure parameter: 0.01 (3)
41 restraints
Special details top

Experimental. The crystal was mounted with polyisobutene oil on the tip of a fine glass fibre, fastened in a copper mounting pin with electrical solder. It was placed directly into the cold stream of a liquid nitrogen based cryostat, according to published methods (Hope, 1994; Parkin & Hope, 1998).

Diffraction data were collected with the crystal at 90 K, which is standard practice in this laboratory for the majority of flash-cooled crystals.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement progress was checked using PLATON (Spek, 2009) and by an R-tensor (Parkin, 2000). The final model was further checked with the IUCr utility checkCIF.

The partial occupancy water molecule was modelled on the site of a difference map peak of approximately 0.67 e A-3. It must have the same or smaller occupancy as the minor disorder component of disorder in the main molecule, which is a very small amount (less than 8%). Nevertheless, it gave a noticeably better fit, and a much flatter difference map, and so was retained. Hydrogen atoms for this water were placed so as to make reasonable H-bonds to nearby acceptors. Overall, the fit is good and the absolute configuration is well established.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.26340 (11)0.40697 (10)0.53330 (6)0.0210 (2)
O20.43064 (11)0.29124 (9)0.59801 (6)0.0165 (2)
O30.42055 (12)0.12939 (12)0.74254 (7)0.0265 (3)
H30.36620.16720.70980.040*
C10.80039 (15)0.21088 (14)0.69190 (8)0.0163 (3)
C20.81758 (16)0.08807 (15)0.73919 (9)0.0214 (3)
H2A0.88880.09910.78330.026*
H2B0.85130.01820.70410.026*
C30.66481 (17)0.06029 (15)0.77202 (9)0.0213 (3)
H3A0.65070.03200.78040.026*
H3B0.64850.10510.82330.026*
C40.56222 (16)0.11003 (14)0.70741 (8)0.0188 (3)
C50.63616 (15)0.23752 (13)0.68365 (8)0.0159 (3)
H50.60860.30300.72430.019*
C60.59247 (14)0.28641 (14)0.60217 (8)0.0147 (3)
H60.62970.22680.56030.018*
C70.63770 (16)0.42119 (13)0.58082 (8)0.0160 (3)
H70.61940.47730.62800.019*
C80.79855 (16)0.43052 (14)0.55809 (9)0.0176 (3)
H8A0.81690.51450.53330.021*
H8B0.82110.36450.51770.021*
C90.90109 (16)0.41382 (15)0.62982 (9)0.0209 (3)
H9A1.00070.43910.61270.025*
H9B0.87000.47470.67170.025*
C100.91239 (16)0.28324 (14)0.66846 (8)0.0180 (3)
C110.52508 (16)0.45244 (14)0.51589 (8)0.0169 (3)
H110.55600.41020.46500.020*
C120.39005 (16)0.38521 (14)0.54730 (8)0.0166 (3)
C141.06853 (17)0.24418 (15)0.68593 (9)0.0220 (3)
H14A1.10850.29820.72840.033*
H14B1.12780.25380.63750.033*
H14C1.07040.15520.70330.033*
C150.55145 (18)0.01621 (14)0.63836 (9)0.0233 (3)
H15A0.51780.06620.65850.035*
H15B0.64790.00620.61350.035*
H15C0.48170.04820.59860.035*
C130.4909 (2)0.5914 (2)0.4980 (2)0.0186 (5)0.922 (2)
H13A0.40890.59540.45930.022*0.922 (2)
H13B0.45830.63340.54790.022*0.922 (2)
N10.61597 (15)0.66157 (13)0.46532 (8)0.0194 (3)0.922 (2)
C160.6579 (2)0.6162 (2)0.38513 (11)0.0255 (5)0.922 (2)
H16A0.68730.52680.38830.038*0.922 (2)
H16B0.73990.66710.36500.038*0.922 (2)
H16C0.57430.62460.34880.038*0.922 (2)
C170.5765 (2)0.79590 (17)0.46031 (11)0.0294 (4)0.922 (2)
H17A0.49660.80670.42180.044*0.922 (2)
H17B0.66170.84520.44280.044*0.922 (2)
H17C0.54470.82590.51300.044*0.922 (2)
C13'0.523 (4)0.596 (3)0.494 (3)0.0186 (5)0.078 (2)
H13C0.44800.63720.52710.022*0.078 (2)
H13D0.61910.63180.50940.022*0.078 (2)
N1'0.4995 (18)0.6291 (14)0.4203 (9)0.0194 (3)0.078 (2)
C16'0.656 (3)0.630 (4)0.408 (2)0.0255 (5)0.078 (2)
H16D0.67890.67770.35870.038*0.078 (2)
H16E0.69170.54250.40200.038*0.078 (2)
H16F0.70470.67030.45330.038*0.078 (2)
C17'0.439 (3)0.7572 (17)0.4127 (14)0.0294 (4)0.078 (2)
H17D0.44670.78510.35690.044*0.078 (2)
H17E0.49480.81550.44700.044*0.078 (2)
H17F0.33640.75690.42920.044*0.078 (2)
O1W0.2432 (13)0.7614 (11)0.3700 (7)0.014 (3)*0.078 (2)
H1W10.16960.76060.33980.022*0.078 (2)
H2W10.20820.74550.41530.022*0.078 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0166 (5)0.0232 (5)0.0233 (5)0.0005 (4)0.0031 (4)0.0017 (4)
O20.0131 (5)0.0184 (5)0.0179 (5)0.0009 (4)0.0010 (4)0.0031 (4)
O30.0163 (5)0.0348 (6)0.0284 (6)0.0003 (5)0.0050 (5)0.0113 (5)
C10.0156 (7)0.0191 (7)0.0143 (6)0.0009 (6)0.0018 (5)0.0010 (6)
C20.0178 (7)0.0245 (7)0.0219 (7)0.0011 (6)0.0012 (6)0.0042 (6)
C30.0212 (8)0.0231 (8)0.0197 (7)0.0008 (6)0.0002 (6)0.0056 (6)
C40.0155 (7)0.0234 (7)0.0176 (7)0.0016 (6)0.0013 (6)0.0051 (6)
C50.0151 (7)0.0174 (7)0.0152 (6)0.0008 (5)0.0008 (5)0.0002 (5)
C60.0109 (6)0.0171 (6)0.0162 (6)0.0005 (5)0.0003 (5)0.0008 (5)
C70.0162 (7)0.0155 (7)0.0162 (6)0.0001 (5)0.0005 (6)0.0011 (5)
C80.0170 (7)0.0151 (7)0.0207 (7)0.0014 (5)0.0015 (6)0.0018 (5)
C90.0149 (7)0.0196 (7)0.0283 (8)0.0038 (6)0.0010 (6)0.0000 (6)
C100.0161 (7)0.0196 (7)0.0181 (6)0.0001 (6)0.0012 (6)0.0036 (6)
C110.0173 (7)0.0169 (7)0.0166 (6)0.0004 (5)0.0005 (5)0.0001 (5)
C120.0189 (7)0.0166 (7)0.0143 (6)0.0006 (5)0.0006 (5)0.0019 (5)
C140.0172 (7)0.0224 (7)0.0266 (7)0.0007 (6)0.0018 (6)0.0001 (6)
C150.0261 (8)0.0198 (7)0.0240 (7)0.0063 (6)0.0033 (6)0.0044 (6)
C130.0156 (14)0.0200 (8)0.0204 (8)0.0008 (8)0.0040 (11)0.0033 (6)
N10.0209 (7)0.0168 (7)0.0205 (7)0.0012 (5)0.0002 (5)0.0032 (5)
C160.0328 (8)0.0234 (10)0.0202 (13)0.0006 (7)0.0104 (8)0.0018 (10)
C170.0363 (10)0.0179 (8)0.0340 (9)0.0005 (8)0.0027 (8)0.0020 (7)
C13'0.0156 (14)0.0200 (8)0.0204 (8)0.0008 (8)0.0040 (11)0.0033 (6)
N1'0.0209 (7)0.0168 (7)0.0205 (7)0.0012 (5)0.0002 (5)0.0032 (5)
C16'0.0328 (8)0.0234 (10)0.0202 (13)0.0006 (7)0.0104 (8)0.0018 (10)
C17'0.0363 (10)0.0179 (8)0.0340 (9)0.0005 (8)0.0027 (8)0.0020 (7)
Geometric parameters (Å, º) top
O1—C121.2021 (18)C11—H111.0000
O2—C121.3542 (17)C14—H14A0.9800
O2—C61.4804 (15)C14—H14B0.9800
O3—C41.4355 (18)C14—H14C0.9800
O3—H30.8400C15—H15A0.9800
C1—C101.334 (2)C15—H15B0.9800
C1—C21.523 (2)C15—H15C0.9800
C1—C51.5321 (18)C13—N11.466 (2)
C2—C31.528 (2)C13—H13A0.9900
C2—H2A0.9900C13—H13B0.9900
C2—H2B0.9900N1—C171.461 (2)
C3—C41.523 (2)N1—C161.474 (2)
C3—H3A0.9900C16—H16A0.9800
C3—H3B0.9900C16—H16B0.9800
C4—C151.522 (2)C16—H16C0.9800
C4—C51.5536 (19)C17—H17A0.9800
C5—C61.5098 (18)C17—H17B0.9800
C5—H51.0000C17—H17C0.9800
C6—C71.5198 (19)C13'—N1'1.29 (5)
C6—H61.0000C13'—C16'1.92 (5)
C7—C81.5206 (19)C13'—H13C0.9900
C7—C111.531 (2)C13'—H13D0.9900
C7—H71.0000N1'—C16'1.45 (2)
C8—C91.532 (2)N1'—C17'1.460 (19)
C8—H8A0.9900C16'—H16D0.9800
C8—H8B0.9900C16'—H16E0.9800
C9—C101.522 (2)C16'—H16F0.9800
C9—H9A0.9900C17'—O1W1.93 (3)
C9—H9B0.9900C17'—H17D0.9800
C10—C141.513 (2)C17'—H17E0.9800
C11—C121.516 (2)C17'—H17F0.9800
C11—C131.525 (3)O1W—H1W10.8400
C11—C13'1.55 (2)O1W—H2W10.8400
C12—O2—C6109.14 (11)C10—C14—H14B109.5
C4—O3—H3109.5H14A—C14—H14B109.5
C10—C1—C2123.90 (13)C10—C14—H14C109.5
C10—C1—C5128.30 (14)H14A—C14—H14C109.5
C2—C1—C5107.63 (12)H14B—C14—H14C109.5
C1—C2—C3104.76 (12)C4—C15—H15A109.5
C1—C2—H2A110.8C4—C15—H15B109.5
C3—C2—H2A110.8H15A—C15—H15B109.5
C1—C2—H2B110.8C4—C15—H15C109.5
C3—C2—H2B110.8H15A—C15—H15C109.5
H2A—C2—H2B108.9H15B—C15—H15C109.5
C4—C3—C2103.97 (11)N1—C13—C11113.35 (14)
C4—C3—H3A111.0N1—C13—H13A108.9
C2—C3—H3A111.0C11—C13—H13A108.9
C4—C3—H3B111.0N1—C13—H13B108.9
C2—C3—H3B111.0C11—C13—H13B108.9
H3A—C3—H3B109.0H13A—C13—H13B107.7
O3—C4—C15110.13 (12)C17—N1—C13108.44 (15)
O3—C4—C3108.25 (11)C17—N1—C16108.97 (15)
C15—C4—C3110.78 (13)C13—N1—C16112.23 (18)
O3—C4—C5111.95 (12)N1—C16—H16A109.5
C15—C4—C5113.22 (11)N1—C16—H16B109.5
C3—C4—C5102.16 (12)H16A—C16—H16B109.5
C6—C5—C1113.72 (11)N1—C16—H16C109.5
C6—C5—C4114.20 (12)H16A—C16—H16C109.5
C1—C5—C4104.15 (12)H16B—C16—H16C109.5
C6—C5—H5108.2N1—C17—H17A109.5
C1—C5—H5108.2N1—C17—H17B109.5
C4—C5—H5108.2H17A—C17—H17B109.5
O2—C6—C5108.54 (10)N1—C17—H17C109.5
O2—C6—C7103.19 (11)H17A—C17—H17C109.5
C5—C6—C7117.26 (12)H17B—C17—H17C109.5
O2—C6—H6109.2N1'—C13'—C11120 (3)
C5—C6—H6109.2N1'—C13'—C16'49.1 (17)
C7—C6—H6109.2C11—C13'—C16'111 (3)
C6—C7—C8112.43 (12)N1'—C13'—H13C107.4
C6—C7—C11100.62 (11)C11—C13'—H13C107.4
C8—C7—C11117.25 (12)C16'—C13'—H13C141.5
C6—C7—H7108.7N1'—C13'—H13D107.4
C8—C7—H7108.7C11—C13'—H13D107.4
C11—C7—H7108.7C16'—C13'—H13D64.5
C7—C8—C9112.81 (12)H13C—C13'—H13D106.9
C7—C8—H8A109.0C13'—N1'—C16'89 (2)
C9—C8—H8A109.0C13'—N1'—C17'113 (2)
C7—C8—H8B109.0C16'—N1'—C17'111 (2)
C9—C8—H8B109.0N1'—C16'—C13'42.4 (17)
H8A—C8—H8B107.8N1'—C16'—H16D109.5
C10—C9—C8118.52 (12)C13'—C16'—H16D148.7
C10—C9—H9A107.7N1'—C16'—H16E109.5
C8—C9—H9A107.7C13'—C16'—H16E95.9
C10—C9—H9B107.7H16D—C16'—H16E109.5
C8—C9—H9B107.7N1'—C16'—H16F109.5
H9A—C9—H9B107.1C13'—C16'—H16F77.4
C1—C10—C14120.73 (13)H16D—C16'—H16F109.5
C1—C10—C9126.02 (13)H16E—C16'—H16F109.5
C14—C10—C9113.03 (12)N1'—C17'—O1W113.7 (15)
C12—C11—C13110.41 (12)N1'—C17'—H17D109.5
C12—C11—C7101.57 (11)O1W—C17'—H17D72.8
C13—C11—C7118.86 (16)N1'—C17'—H17E109.5
C12—C11—C13'121.9 (15)O1W—C17'—H17E132.9
C7—C11—C13'112.7 (18)H17D—C17'—H17E109.5
C12—C11—H11108.5N1'—C17'—H17F109.5
C13—C11—H11108.5O1W—C17'—H17F38.1
C7—C11—H11108.5H17D—C17'—H17F109.5
O1—C12—O2121.62 (13)H17E—C17'—H17F109.5
O1—C12—C11128.80 (13)C17'—O1W—H1W1164.8
O2—C12—C11109.58 (12)C17'—O1W—H2W190.8
C10—C14—H14A109.5H1W1—O1W—H2W1103.6
C10—C1—C2—C3164.39 (14)C8—C9—C10—C150.3 (2)
C5—C1—C2—C311.20 (15)C8—C9—C10—C14135.02 (14)
C1—C2—C3—C433.25 (15)C6—C7—C11—C1236.38 (13)
C2—C3—C4—O3160.27 (12)C8—C7—C11—C12158.62 (12)
C2—C3—C4—C1578.88 (15)C6—C7—C11—C13157.67 (14)
C2—C3—C4—C542.00 (14)C8—C7—C11—C1380.10 (18)
C10—C1—C5—C645.2 (2)C6—C7—C11—C13'168.5 (17)
C2—C1—C5—C6139.44 (12)C8—C7—C11—C13'69.3 (17)
C10—C1—C5—C4170.15 (14)C6—O2—C12—O1179.20 (13)
C2—C1—C5—C414.51 (15)C6—O2—C12—C111.67 (15)
O3—C4—C5—C685.21 (15)C13—C11—C12—O129.4 (2)
C15—C4—C5—C640.01 (17)C7—C11—C12—O1156.38 (15)
C3—C4—C5—C6159.18 (11)C13'—C11—C12—O130 (2)
O3—C4—C5—C1150.16 (11)C13—C11—C12—O2149.67 (17)
C15—C4—C5—C184.62 (14)C7—C11—C12—O222.67 (14)
C3—C4—C5—C134.56 (14)C13'—C11—C12—O2149 (2)
C12—O2—C6—C5150.78 (11)C12—C11—C13—N1178.49 (19)
C12—O2—C6—C725.69 (13)C7—C11—C13—N164.8 (3)
C1—C5—C6—O2172.18 (11)C13'—C11—C13—N15 (10)
C4—C5—C6—O252.82 (15)C11—C13—N1—C17172.80 (19)
C1—C5—C6—C771.48 (16)C11—C13—N1—C1666.8 (3)
C4—C5—C6—C7169.16 (12)C12—C11—C13'—N1'94 (3)
O2—C6—C7—C8163.62 (11)C13—C11—C13'—N1'91 (11)
C5—C6—C7—C877.15 (15)C7—C11—C13'—N1'144 (3)
O2—C6—C7—C1138.06 (13)C12—C11—C13'—C16'148.3 (17)
C5—C6—C7—C11157.29 (12)C13—C11—C13'—C16'145 (12)
C6—C7—C8—C971.33 (15)C7—C11—C13'—C16'91 (3)
C11—C7—C8—C9172.75 (12)C11—C13'—N1'—C16'93 (3)
C7—C8—C9—C1069.48 (17)C11—C13'—N1'—C17'155 (2)
C2—C1—C10—C141.9 (2)C16'—C13'—N1'—C17'112 (2)
C5—C1—C10—C14176.57 (13)C17'—N1'—C16'—C13'114 (2)
C2—C1—C10—C9172.40 (13)C13'—N1'—C17'—O1W115 (2)
C5—C1—C10—C92.2 (2)C16'—N1'—C17'—O1W147.4 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.352.9578 (15)129
O1W—H1W1···O3i0.842.162.845 (12)139
Symmetry code: (i) x+1/2, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3···O20.842.352.9578 (15)129.2
O1W—H1W1···O3i0.842.162.845 (12)138.7
Symmetry code: (i) x+1/2, y+1, z1/2.
 

Acknowledgements

This work was supported by the NIH/NCI (grant No. CA158275).

References

First citationAcosta, J. & Fixher, N. (1993). J. Nat. Prod. 56, 90–98.  PubMed Web of Science Google Scholar
First citationAcosta, J. C., Fronczek, F. R. & Fischer, N. H. (1991). Acta Cryst. C47, 2702–2704.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBruker (2006). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationParkin, S. (2000). Acta Cryst. A56, 157–162.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationParsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationRodriguez, E., Towers, G. H. N. & Mitchell, J. C. (1976). Phytochemistry, 15, 1573–1580.  CrossRef CAS Web of Science Google Scholar
First citationSethi, V. K., Thappat, R. K., Dhar, K. L. & Atal, C. K. (1984). Planta Med. 50, 364.  CrossRef PubMed Web of Science Google Scholar
First citationSheldrick, G. M. (2008a). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSheldrick, G. M. (2008b). SADABS. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationZhang, Q., Lu, Y., Ding, Y., Zhai, J., Ji, Q., Ma, W., Yang, M., Fan, H., Long, J., Tong, Z., Shi, Y., Jia, Y., Han, B., Zhang, W., Qiu, C., Ma, X., Li, Q., Shi, Q., Zhang, H., Li, D., Zhang, J., Lin, J., Li, L. Y., Gao, Y. & Chen, Y. (2012). J. Med. Chem. 55, 8757–8769.  Web of Science CrossRef CAS PubMed Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Volume 69| Part 12| December 2013| Pages o1789-o1790
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds